So sánh A và B biết : \(A=\dfrac{10^{2006}+1}{10^{2007}+1},B=\dfrac{10^{2007}+1}{10^{2008}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10A=\dfrac{10^{2007}+10}{10^{2007}+1}=\dfrac{10^{2007}+1+9}{10^{2007}+1}=1+\dfrac{9}{10^{2007}+1}\left(1\right)\)\(10B=\dfrac{10^{2008}+10}{10^{2008}+1}=\dfrac{10^{2008}+1+9}{10^{2008}+1}=1+\dfrac{9}{10^{2008}+1}\left(2\right)\)Từ (1) và ( 2 ) suy ra A>B
\(A=\dfrac{10^{2006}+1}{10^{2007}+1}\)
\(10A=\dfrac{10^{2007}+10}{10^{2007}+1}=\dfrac{10^{2007}+1+9}{10^{2007}+1}=1+\dfrac{9}{10^{2007}+1}\left(1\right)\)
\(B=\dfrac{10^{2007}+1}{10^{2008}+1}\)
\(10B=\dfrac{10^{2008}+10}{10^{2008}+1}=\dfrac{10^{2008}+1+10}{10^{2008}+1}=1+\dfrac{9}{10^{2008}+1}\left(2\right)\)
Từ (1)và (2)=>A>B
Chúc Bạn học tốt ,có nhiều thành công trong học tập
10A=10*\(\frac{10^{2006}+1}{10^{2007}+1}\) 10B=10*\(\frac{10^{2007}+1}{10^{2008}+1}\)
10A=\(\frac{10^{2007}+1+9}{10^{2007}+1}\) 10B=\(\frac{10^{2008}+1+9}{10^{2008}+1}\)
10A=1+\(\frac{9}{10^{2007}+1}\) 10B=1+\(\frac{9}{10^{2008}+1}\)
Vì \(\frac{9}{10^{2007}+1}\)>\(\frac{9}{10^{2008}+1}\)=>1+\(\frac{9}{10^{2007}+1}\)>1+\(\frac{9}{10^{2008}+1}\)
Nên 10A>10B=>A>B
Ta có: \(A=\frac{10^{2006}+1}{10^{2007}+1}\)
\(=>10A=\frac{10^{2007}+10}{10^{2007}+1}=\frac{10^{2007}+1+9}{10^{2007}+1}=\frac{10^{2007}+1}{10^{2007}+1}+\frac{9}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)
\(B=\frac{10^{2007}+1}{10^{2008}+1}\)
\(=>10B=\frac{10^{2008}+10}{10^{2008}+1}=\frac{10^{2008}+1+9}{10^{2008}+1}=\frac{10^{2008}+1}{10^{2008}+1}+\frac{9}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)
Vì \(10^{2007}+1< 10^{2008}+1=>\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}=>1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}=>10A>10B=>A>B\)
Áp dụng bất đẳng thức :
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\left(a;b;m\in N;b\ne0\right)\)
Ta có : \(B=\dfrac{10^{2007}+1}{10^{2008}+1}< 1\)
\(\Leftrightarrow B=\dfrac{10^{2007}+1}{10^{2008}+1}< \dfrac{10^{2007}+1+9}{10^{2008}+1+9}=\dfrac{10^{2007}+10}{10^{2008}+10}=\dfrac{10\left(10^{2006}+1\right)}{10\left(10^{2007}+1\right)}=\dfrac{10^{2006}+1}{10^{2007}+1}=A\)
\(\Leftrightarrow B< A\)
Ta có: A=\(\frac{10^{2006}+1}{10^{2007}+1}\)
=>10A=\(\frac{10\left(10^{2006}+1\right)}{10^{2007}+1}=\frac{10^{2007}+10}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)
Ta có: B=\(\frac{10^{2007}+1}{10^{2008}+1}\)
=>10B=\(\frac{10\left(10^{2007}+1\right)}{10^{2008}+1}=\frac{10^{2008}+10}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)
Mà \(\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}\) (do 102007+1<102008+1)
=>\(1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}\)
=>10A>10B
=>A>B
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
=> \(B=\frac{10^{2007}+1}{10^{2008}+1}< \frac{10^{2007}+1+9}{10^{2008}+1+9}\)
=> \(B< \frac{10^{2007}+10}{10^{2008}+10}\)
=> \(B< \frac{10.\left(10^{2006}+1\right)}{10.\left(10^{2007}+1\right)}\)
=> \(B< \frac{10^{2006}+1}{10^{2007}+1}=A\)