Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10A=\dfrac{10^{2007}+10}{10^{2007}+1}=\dfrac{10^{2007}+1+9}{10^{2007}+1}=1+\dfrac{9}{10^{2007}+1}\left(1\right)\)\(10B=\dfrac{10^{2008}+10}{10^{2008}+1}=\dfrac{10^{2008}+1+9}{10^{2008}+1}=1+\dfrac{9}{10^{2008}+1}\left(2\right)\)Từ (1) và ( 2 ) suy ra A>B
\(A=\dfrac{10^{2006}+1}{10^{2007}+1}\)
\(10A=\dfrac{10^{2007}+10}{10^{2007}+1}=\dfrac{10^{2007}+1+9}{10^{2007}+1}=1+\dfrac{9}{10^{2007}+1}\left(1\right)\)
\(B=\dfrac{10^{2007}+1}{10^{2008}+1}\)
\(10B=\dfrac{10^{2008}+10}{10^{2008}+1}=\dfrac{10^{2008}+1+10}{10^{2008}+1}=1+\dfrac{9}{10^{2008}+1}\left(2\right)\)
Từ (1)và (2)=>A>B
Chúc Bạn học tốt ,có nhiều thành công trong học tập
Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\)(\(a;b;m\in\)N*)
Ta có:
\(B=\frac{10^{2007}+1}{10^{2008}+1}< \frac{10^{2007}+1+9}{10^{2008}+1+9}\)
\(B< \frac{10^{2007}+10}{10^{2008}+10}\)
\(B< \frac{10.\left(10^{2006}+1\right)}{10.\left(10^{2007}+1\right)}\)
\(B< \frac{10^{2006}+1}{10^{2007}+1}=A\)
=> \(B< A\)
\(1-A=\frac{10^{2007}-10^{2006}}{10^{2007}+1}=\frac{9.10^{2006}}{10^{2007}+1}=\frac{9.2^{2007}}{10^{2008}+10}\)
\(1-B=\frac{10^{2008}-10^{2007}}{10^{2008}+1}=\frac{9.10^{2007}}{10^{2008}+1}\)
=>1-A< 1-B
=> A > B
\(Tacó:10A=\frac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)\(10B=\frac{10\left(10^{2017}+1\right)}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}+1}=\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)\(Vì:1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
a, \(A=\dfrac{10^{15}+1}{10^6+1}>1\);\(B=\dfrac{10^6+1}{10^{17}+1}< 1\)
⇒\(A>B\)
b, \(D=\dfrac{2^{2007}+3}{2^{2006}-1}=\dfrac{2^{2008}+6}{2^{2007}-2}\)
Ta có : \(\dfrac{2^{2008}-3}{2^{2007}-1}< \dfrac{2^{2008}-3}{2^{2007}-2}< \dfrac{2^{2008}+6}{2^{2007}-2}\)
⇒ \(C< D\)
c, \(M=\dfrac{3}{8^3}+\dfrac{7}{8^4}=\dfrac{3}{8^3}+\dfrac{3}{8^4}+\dfrac{4}{8^4}\)
\(N=\dfrac{7}{8^3}+\dfrac{3}{8^4}=\dfrac{3}{8^3}+\dfrac{4}{8^3}+\dfrac{3}{8^4}\)
Vì \(\dfrac{4}{8^4}< \dfrac{4}{8^3}\)
⇒ \(M< N\)
Áp dụng bất đẳng thức :
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\left(a;b;m\in N;b\ne0\right)\)
Ta có : \(B=\dfrac{10^{2007}+1}{10^{2008}+1}< 1\)
\(\Leftrightarrow B=\dfrac{10^{2007}+1}{10^{2008}+1}< \dfrac{10^{2007}+1+9}{10^{2008}+1+9}=\dfrac{10^{2007}+10}{10^{2008}+10}=\dfrac{10\left(10^{2006}+1\right)}{10\left(10^{2007}+1\right)}=\dfrac{10^{2006}+1}{10^{2007}+1}=A\)
\(\Leftrightarrow B< A\)