K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

1 và 3 thui

15 tháng 12 2016

Trình bày lời giải hộ mk đi

 Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

11 tháng 4 2016

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

26 tháng 6 2016

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

26 tháng 6 2016

+)  Với n = 1 thì 1! = 1 = 1² là số chính phương . 
+)  Với n = 2 thì 1! + 2! = 3 không là số chính phương 
+)  Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
+)  Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3

7 tháng 4 2015

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3

7 tháng 4 2015

bạn tôi học giỏi toán làm đúng đấy !

6 tháng 2 2016

A)(0;0)(1;1)

B)Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

6 tháng 2 2016

a)xy=x+y

=>xy-x-y=0

=>x(y-1)-(y-1)-1=0

=>x(y-1)-(y-1)=1

=>(y-1)(x-1)=1

=>y-1 và x-1 E Ư(1)={+-1}=>y=2 thì x=2 và y=0 thì x=0

b)Câu này khó quá nhưng ủng hộ nha

16 tháng 7 2017

Nếu n=1 thì S=1 chính phương

Nếu n=2 thì S=3 ko chính phương

Nếu n=3 thì S=9 chính phương 

Nếu n=4 thì S=33 ko chính phương 

Nếu n>=5 thì S = 1+1.2+1.2.3+1.2.3.4+1.2.3.4.5+....+1.2.3....n

1+2+9+24+....0 +....0 +.....+....0 = ....3 ko chính phương ( S là tổng 1!+2!+...+n!)

6 tháng 12 2019

với n = 1 thì n! = 1 = 12 là số chính phương

với n = 2 thì 1!+2! = 3 không là số chính phương

với n = 3 thì 1!+2!+3! = 1+1.2+1.2.3=9 là số chính phương

với n \(\ge\)4 ta có 1! + 2! + 3! + 4! = 1 + 1.2 + 1.2.3 + 1.2.3.4 = 33 còn 5! ; 6! ; ... ; n!  đều có tận cùng là 0 do đó 1! + 2! + 3! + .... + n! có tận cùng là 3 nên nó k phải số chính phương

vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1 ; n = 3

9 tháng 7 2020

với n 1 thì n! = 1 =​​​ 1\(^2\)là số chính phương

với n = 2 thì 1! + 2!  = 3 không là số chính phương

với n = 3 thì 1! +2! +3! = 1+1.2 +1.2.3 =9 là số chính phương

với n \(>\)4 ta có 1! +2! +3! +4! = 1 +1.2 + 1.2.3 +1.2.3.4 = 33 còn 5! ; 6!; ....; n! đều có tận cùng là 0 do đó 1! +2! +3!+ .... +

n! có tận cùng là 3 nên nó không phải số chính phương

vậy có 2 số tự nhiên n thỏa mãn đề bài là n =1 ; n=3