Tính giá trị của biểu thức sau bằng cách hợp lí nhất
\(b=\dfrac{4}{8.13}+\dfrac{4}{13.18}+\dfrac{4}{18.23}+...+\dfrac{4}{253.258}\)
hộ mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{4}{8\cdot13}+\dfrac{4}{13\cdot18}+\dfrac{4}{18\cdot23}+...+\dfrac{4}{253\cdot258}\\ =\dfrac{4}{5}\cdot\dfrac{5}{8\cdot13}+\dfrac{4}{5}\cdot\dfrac{5}{13\cdot18}+\dfrac{4}{5}\cdot\dfrac{5}{18\cdot23}+...+\dfrac{4}{5}\cdot\dfrac{5}{253\cdot258}\\ =\dfrac{4}{5}\left(\dfrac{5}{8\cdot13}+\dfrac{5}{13\cdot18}+\dfrac{5}{18\cdot23}+...+\dfrac{5}{253\cdot258}\right)\\ =\dfrac{4}{5}\cdot\left(\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{23}+...+\dfrac{1}{253}-\dfrac{1}{258}\right)\\ =\dfrac{4}{5}\cdot\left(\dfrac{1}{8}-\dfrac{1}{258}\right)\\ =\dfrac{4}{5}\cdot\dfrac{125}{1032}\\ =\dfrac{25}{258}\)
ta có
Tính:
\(\dfrac{4}{8.13}+\dfrac{4}{13.18}+....+\dfrac{4}{253.258}\)
= 4 (\(\dfrac{1}{8.13}+\dfrac{1}{13.18}+.....+\dfrac{1}{253.258}\))
=\(\dfrac{4}{5}\left(\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+...+\dfrac{1}{253}-\dfrac{1}{258}\right)\)
=\(\dfrac{4}{5}\left(\dfrac{1}{8}-\dfrac{1}{258}\right)\)
=\(\dfrac{25}{258}\)
\(A=\left(3-\dfrac{1}{4}+\dfrac{3}{2}\right)-\left(5+\dfrac{1}{3}-\dfrac{5}{6}\right)-\left(6-\dfrac{7}{4}+\dfrac{2}{3}\right)\\ \Rightarrow A=3-\dfrac{1}{4}+\dfrac{3}{2}-5-\dfrac{1}{3}+\dfrac{5}{6}-6+\dfrac{7}{4}-\dfrac{2}{3}\\ \Rightarrow A=\left(3-5-6\right)-\left(\dfrac{1}{4}+\dfrac{7}{4}\right)+\left(\dfrac{3}{2}+\dfrac{5}{6}-\dfrac{2}{3}\right)\\ \Rightarrow A=-8-\dfrac{3}{2}+\dfrac{5}{3}\\ =-\dfrac{47}{6}.\\ B=0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}+\dfrac{1}{41}\)
\(\Rightarrow B=\left(0,5+0,4\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{9}{10}+\dfrac{1}{2}+\dfrac{3}{5}+\dfrac{1}{41}\\ \Rightarrow B=2+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{83}{41}.\)
A = \(\dfrac{2}{35}\) + \(\dfrac{4}{77}\) + \(\dfrac{2}{143}\) + \(\dfrac{4}{221}\) + \(\dfrac{2}{323}\) + \(\dfrac{4}{437}\) + \(\dfrac{2}{575}\)
A = \(\dfrac{2}{5\times7}\)+\(\dfrac{4}{7\times11}\)+\(\dfrac{2}{11\times13}\)+\(\dfrac{4}{13\times17}\)+\(\dfrac{2}{17\times19}\)+\(\dfrac{4}{19\times23}\)+\(\dfrac{2}{23\times25}\)
A = \(\dfrac{1}{5}\)-\(\dfrac{1}{7}\)+ \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\)+\(\dfrac{1}{11}\)-\(\dfrac{1}{13}\)+\(\dfrac{1}{13}\)-\(\dfrac{1}{17}\)+\(\dfrac{1}{17}\)-\(\dfrac{1}{19}\)+\(\dfrac{1}{19}\)-\(\dfrac{1}{23}\)+\(\dfrac{1}{23}\)-\(\dfrac{1}{25}\)
A = \(\dfrac{1}{5}\) - \(\dfrac{1}{25}\)
A = \(\dfrac{4}{25}\)
\(\frac{4}{8.13}+\frac{4}{13.18}+\frac{4}{18.24}+...+\frac{4}{253.258}\)
\(=\frac{4}{5}\cdot\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+\frac{1}{18}-\frac{1}{23}+...+\frac{1}{253}-\frac{1}{258}\right)\)
\(=\frac{4}{5}\cdot\left(\frac{1}{8}-\frac{1}{258}\right)\)
\(=\frac{4}{5}\cdot\frac{125}{1032}\)
\(=\frac{25}{258}\)
\(\frac{4}{8.13}+\frac{4}{13.18}+\frac{4}{18.23}+...+\frac{4}{253.258}\)
\(=\frac{4}{5}\left(\frac{5}{8.13}+\frac{5}{13.18}+\frac{5}{18.23}+...+\frac{5}{253.258}\right)\)
\(=\frac{4}{5}\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+\frac{1}{18}-\frac{1}{23}+...+\frac{1}{253}-\frac{1}{258}\right)\)
\(=\frac{4}{5}\left(\frac{1}{8}-\frac{1}{258}\right)\)
\(=\frac{4}{5}.\frac{125}{1032}=\frac{25}{258}\)
\(=\dfrac{8}{5}+\dfrac{18+2-14-6}{11}+\dfrac{8}{5}=\dfrac{16}{5}\)
a: \(=\dfrac{28-2-3}{4}:\dfrac{40-2-5}{8}=\dfrac{23}{4}\cdot\dfrac{8}{33}=\dfrac{46}{33}\)
b: =78(0,65+0,35)+2020(2,2-2,2)
=78*1=78
-3^7.2^8/2^.3^7
=-3.2
=-6
5^3.3^5/5^3(0,5+2,5)
=5^3.3^5/5^3.3\
3^4
=81
5.7^4+7^3.25/7^5.125-7^3.50
=5.7^3(7+5
5.7^4+7^3.25/7^5.125-7^3.50
=5.7^4+7^3.5^2/7^5.5^3-7^3.11.5
=5.7^3(1.7+1.5)/7^3.5(7^2.25-11)
12/1250
\(\dfrac{5b}{4}=\dfrac{5}{8.13}+\dfrac{5}{13.18}+\dfrac{5}{18.23}+...+\dfrac{5}{253.258}\\ =\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{23}+...+\dfrac{1}{253}-\dfrac{1}{258}\\ =\dfrac{1}{8}-\dfrac{1}{258}=\dfrac{125}{1032}\\ =>b=\dfrac{25}{258}\)
\(B=\dfrac{4}{8\cdot13}+\dfrac{4}{13\cdot18}+\dfrac{4}{18\cdot23}+...+\dfrac{1}{253\cdot258}\)
\(B=4\left(\dfrac{1}{8\cdot13}+\dfrac{1}{13\cdot18}+\dfrac{1}{18\cdot23}+...+\dfrac{1}{253\cdot258}\right)\)
\(B=\dfrac{4}{5}\left(\dfrac{5}{8\cdot13}+\dfrac{5}{13\cdot18}+\dfrac{5}{18\cdot23}+...+\dfrac{5}{253\cdot258}\right)\)
\(B=\dfrac{4}{5}\left(\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{23}+...+\dfrac{1}{253}-\dfrac{1}{258}\right)\)
\(B=\dfrac{4}{5}\left(\dfrac{1}{8}-\dfrac{1}{258}\right)\)
\(B=\dfrac{4}{5}\cdot\dfrac{125}{1032}=\dfrac{25}{258}\)