Chứng minh rằng : A chia hết cho 5 , biết :
A = 99999999931999999 - 555555557199999997
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
Ta có:
3a + 18b = 3(a + 6b) = 3[(a + b) + 5b]
Mà a + b \(⋮\) 5 và 5b \(⋮\) 5
=> (a + b) + 5b \(⋮\) 5
=> 3[(a + b) + 5b] \(⋮\) 5
=> 3a + 18b \(⋮\) 5 (đpcm)
3a + 18b = 3(a + b) + 15b
Mà (a + b) chia hết cho 5 và 15b chia hết cho 6 nên 3a + 18b chia hết cho 5
vì a=b=c nên a chỉ có thể bằng 0 hoặc 5 mà thôi vì b+c chia hết cho 5
ta có: a có thể bằng 5 vì a chia hết cho 5
5^n,ví dụ n là 2 thì bằng 25
5^n có thể chia hết cho 25
ta có 150 cũng chia hết cho25
vâỵ a+150 chia hết cho 25
a mũ n chia hết cho 5 => a = 5k ( k thuộc N* )
Do đó a mũ 2 + 150= ( 5k) tất cả mũ 2 + 25 . 6
= 25 . ( k+ 6) chia hết cho 25