Tính giá trị các biểu thức sau
a, 1+2+3+....+2016
b, 1*2+2*3+3*4+...+1001*1002
c, 1*3+2*4+3*5+...+2013*2015
d, 6+16+30+48+...+19600+19998
e, 22+42+62+...+982+1002
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = 12 + 22 + 32 + 10012 + 10022
E = 1 + 4 + 9 + 1002001 + 1004004
E = 2006019
\(A=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\\ A=100+99+99+98+...+2+1\\ A=\left(100+1\right)\left(100-1+1\right):2=5050\)
\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^1-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1=2^{128}-1+1=2^{128}\)
\(C=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\\ C=2c^2\)
a: \(A=\left(100-99\right)\left(100+99\right)+\left(98+97\right)\left(98-97\right)+....+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1\)
=5050
b: \(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{64}-1\right)\cdot\left(2^{64}+1\right)+1\)
\(=2^{128}-1+1=2^{128}\)
a. \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=199+195+...+3\)
\(=\dfrac{\left(199+3\right)\left(\dfrac{199-3}{4}+1\right)}{2}=5050\)
b. \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)
\(=2^{128}-1+1=2^{128}\)
c) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-2b^2-4ab\)
\(=2c^2\)
F = 1×3 + 2×4 + 3×5 +...+ 2013×2015
= 1×(2+1) + 2×(3+1) + 3×(4+1) +...+ 2013×(2014+1)
= 1×2 + 1 + 2×3 + 1 +...+2013×2014 + 2013
= (1×2 + 2×3 +...+2013×2014) + (1+2+3+...+2013)
Ta có: 1+2+3+...+2013 = 2014 × 2013 : 2 = 2027091
đặt A = 1×2 + 2×3 +...+2013×2014
3A= 1×2×3 + 2×3×(4-1) +3×4×(5-2)...+2013×2014×(2015-2012)
3A=(1×2×3 + 2×3×4 +...+2013×2014×2015)-(1×2×3+2×3×4+....+2012×2013×2014)
3A=2013×2014×2015
A= 2723058910
F=2725086001
Ngô phương thảo thiếu rồi, cả G và J nữa chứ, sao lại chỉ có F?
a, 1+2+3+....+20165
số hạng của dãy trên là :
( 20165 - 1 ) : 1 + 1 = 20165 ( số )
tổng dãy trên là :
( 20165 + 1 ) . 20165 : 2 = 203323695
Đáp số : ...
b, 1*2+2*3+3*4+...+1001*1002
gọi A là tên biểu thức trên
ta có : A = 1*2+2*3+3*4+...+1001*1002
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 1001.1002.3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 1001.1002 . ( 1003 - 1000 )
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 1001.1002.1003 - 1000.1001.1002
3A =1001.1002.1003
A = ( 1001.1002.1003 ) : 3
A = 335337002
tương tự
de ec ma ko lam duoc