Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có: A= 10022 (10023 +1) - 1002 (10024-2) -10022
= 1002 (10024 - 10024 + 1002 -1002 - 2)
= 1002 * (-2)
= -2004
Nhớ k cho mik nha :)
a: A=x^2y(2/3+3+1)=14/3*x^2y
=14/3*3^2*(-1/7)
=-2*3=-6
\(A=2x+xy^2-x^2y-2y\)
\(=2\left(x-y\right)-xy\left(x-y\right)\)
\(=\left(x-y\right)\left(2-xy\right)\)
\(=\left(-\dfrac{1}{2}-\dfrac{-1}{3}\right)\left(2-\dfrac{-1}{2}\cdot\dfrac{-1}{3}\right)\)
\(=\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\cdot\left(2-\dfrac{1}{6}\right)\)
\(=\dfrac{-1}{6}\cdot\dfrac{11}{6}=-\dfrac{11}{36}\)
\(A=2x^2+2\sqrt{2}x+3\\ =2\left(x^2+\sqrt{2}x+\dfrac{3}{2}\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}+1\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}\right)+2\\ =2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\)
Ta có \(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2\ge0\forall x\)
\(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\ge2\forall x\)
Dấu bằng xảy ra khi : \(x+\dfrac{1}{\sqrt{2}}=0\\ \Rightarrow x=\dfrac{-\sqrt{2}}{2}\)
Vậy \(Min_A=2\) khi \(x=\dfrac{-\sqrt{2}}{2}\)
\(A=3\left|1-2x\right|-5\)
Ta có: \(\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3.\left|1-2x\right|-5\ge-5\forall x\)
\(\Rightarrow A\ge-5\forall x\)
Dấu "=" xảy ra
\(\Leftrightarrow3.\left|1-2x\right|=0\Leftrightarrow1-2x=0\Leftrightarrow x=\dfrac{1}{2}\)
a:
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(A=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)
\(=\left(\dfrac{x-2}{2\left(x-1\right)}+\dfrac{3}{2\left(x-1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right):\dfrac{x+1-x+3}{x+1}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)+3\left(x+1\right)-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2-x-2+3x+3-x^2-2x+3}{2\left(x-1\right)}\cdot\dfrac{1}{2}\)
\(=\dfrac{-2}{4\left(x-1\right)}=\dfrac{-1}{2\left(x-1\right)}\)
Khi x=2005 thì \(A=\dfrac{-1}{2\cdot\left(2005-1\right)}=-\dfrac{1}{4008}\)
Vì x=1 không thỏa mãn ĐKXĐ
nên khi x=1 thì A không có giá trị
c: Để A=-1002 thì \(\dfrac{-1}{2\left(x-1\right)}=-1002\)
=>\(2\left(x-1\right)=\dfrac{1}{1002}\)
=>\(x-1=\dfrac{1}{2004}\)
=>\(x=\dfrac{1}{2004}+1=\dfrac{2005}{2004}\left(nhận\right)\)
đặt 1002=x
ta có:
A=x2(x3+1)-x(x4-2)-x2
=x5+x2-x5+2x-x2
= 2x
thay x=1002
A=2.1002
Vậy A=2004.