\(^2\) + 2\(\sqrt{2x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2023

\(A=2x^2+2\sqrt{2}x+3\\ =2\left(x^2+\sqrt{2}x+\dfrac{3}{2}\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}+1\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}\right)+2\\ =2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\)

Ta có \(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2\ge0\forall x\)

\(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\ge2\forall x\)

Dấu bằng xảy ra khi : \(x+\dfrac{1}{\sqrt{2}}=0\\ \Rightarrow x=\dfrac{-\sqrt{2}}{2}\)

Vậy \(Min_A=2\) khi \(x=\dfrac{-\sqrt{2}}{2}\)

22 tháng 4 2017

Giải bài 43 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

2 tháng 4 2017

\(A=\frac{x^2-2x+2011}{x^2}=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2011}{x^2}=1-\frac{2}{x}+\frac{2011}{x^2}\)

Đặt \(t=\frac{1}{x}\) ta có: \(A=2011t^2-2t+1\)

\(\Leftrightarrow A=2011t^2-2t+\frac{1}{2011}+\frac{2010}{2011}\)

\(\Leftrightarrow A=2011\left(t^2-\frac{2t}{2011}+\frac{1}{2011^2}\right)+\frac{2010}{2011}\)

\(\Leftrightarrow A=2011\left(t-\frac{1}{2011}\right)^2+\frac{2010}{2011}\ge\frac{2010}{2011}\)

Đẳng thức xảy ra khi \(t=\frac{1}{2011}\Leftrightarrow x=2011\)

1 tháng 5 2017

Ta có:\(\frac{x^2-2x+2011}{x^2}\ge\frac{2010}{2011}\Rightarrow2011\left(x^2-2x+2011\right)\ge2010x^2\)

\(\Rightarrow2011x^2-2x2011+2011^2\ge2010^2\)

\(\Rightarrow2011x^2-2x2011+2011-2010x^2\ge0\)

\(\Rightarrow x^2-2x2011+2011^2\ge0\)

\(\Rightarrow\left(x-2011\right)^2\ge0\)(đúng)

\(\Rightarrow\)đpcm

30 tháng 7 2018

\(A=\dfrac{1}{-x^2+2x-2}\)

A min \(\Leftrightarrow\dfrac{1}{A}\)max

ta có \(\dfrac{1}{A}=-x^2+2x-2=-\left(x^2-2x+2\right)=-\left(x-1\right)^2-1\le-1\)

\(\dfrac{1}{A}\)max= -1 tại x=1

=> A min = -1 tại x=1

\(B=\dfrac{2}{-4x^2+8x-5}\) ( phải là -4x2 nha bn)

B min \(\Leftrightarrow\dfrac{1}{B}\) max

ta có \(\dfrac{1}{B}=\dfrac{-4x^2+8x-5}{2}=\dfrac{-\left(4x^2-8x+5\right)}{2}=\dfrac{-\left(2x-4\right)^2+11}{2}=\dfrac{\left(-2x-4\right)^2}{2}+\dfrac{11}{2}\le\dfrac{11}{2}\)

\(\dfrac{1}{B}\)max=\(\dfrac{11}{2}\) tại x=2

\(\Rightarrow B\) min = \(\dfrac{1}{\dfrac{11}{2}}=\dfrac{2}{11}\) tại x=2

\(A=\dfrac{3}{2x^2+2x+3}=\dfrac{3}{2\left(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{5}{2}}=\dfrac{3}{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}\)

A max \(\Leftrightarrow\dfrac{1}{A}\) min

\(\Leftrightarrow\dfrac{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{5}{6}\ge\dfrac{5}{6}\)

\(\dfrac{1}{A}\) min = \(\dfrac{5}{6}\)tại x= \(-\dfrac{1}{2}\)

\(\Rightarrow A\)max = \(\dfrac{6}{5}\) tại x= \(-\dfrac{1}{2}\)

B\(=\dfrac{5}{3x^2+4x+15}=\dfrac{5}{3.\left(x^2+\dfrac{4}{3}x+5\right)}=\dfrac{5}{3\left(x^2+2.x.\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{41}{9}\right)}=\dfrac{5}{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}\)

B max \(\Leftrightarrow\dfrac{1}{B}\) min

\(\Leftrightarrow\dfrac{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}{5}=\dfrac{3\left(x+\dfrac{2}{3}\right)^2}{5}+\dfrac{41}{15}\ge\dfrac{41}{15}\)

\(\dfrac{1}{B}\) min = \(\dfrac{41}{15}\) tại x=\(-\dfrac{2}{3}\)

=> \(B\) max = \(\dfrac{15}{41}\) tại x=\(-\dfrac{2}{3}\)

Đây chỉ là gợi ý !! bn pải tự lí luận nha

tik thanghoa

hoc tot de lam lien doi nho chua.

7 tháng 4 2018

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

10 tháng 10 2017

Tuy mk không biết làm nhưng mình sẽ đánh dấu bài này mk không cần bạn k nhưng bạn k trong các câu khác nha.

Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp Trang Nhung giải bài toán này.

20 tháng 11 2017

A=x4+12+2x3+2x+3x2

A=(x2)2+2(x2)(1)+(1)2-2x2+2x(x2+1)+3x2

A=(x2+1)2+2x(x2+1)+x2

Đặt a=x2+1

Khi đó đa thức trở thành:

A=a2+2ax+x2

A=(a+x)2

A=(x2+1+x)2

\(A=\left(x\right)^2+2\left(x\right)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\frac{1}{4}+\frac{4}{4}\)

\(A=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\)

Ta có:

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Leftrightarrow A\ge\frac{3}{4}\)

Dấu"=" xảy ra khi:

\(x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy GTNN của A là \(\frac{3}{4}\)khi x=\(\frac{-1}{2}\)

20 tháng 11 2017

hình như theo cách giải của Nguyễn Triệu Khả Nhi thì GTNN của P=0 thì mới đúng

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)