so sánh A và B:
A=\(\frac{3^{123}+1}{3^{125}+1}\)
B=\(\frac{3^{122}+1}{3^{124}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{3^{123}+1}{3^{125}+1}\) Vì 3123 + 1 < 2125 + 1 Nên A = \(\dfrac{3^{123}+1}{3^{125}+1}\)< \(\dfrac{3^{123}+1+2}{3^{125}+1+2}\)
A < \(\dfrac{3^{123}+3}{3^{125}+3}\) = \(\dfrac{3.\left(3^{122}+1\right)}{3.\left(3^{124}+1\right)}\) = \(\dfrac{3^{122}+1}{3^{124}+1}\) = B
Vậy A < B
\(B=\frac{3^{122}}{3^{124}+1}=\frac{3^{123}}{3^{125}+3}< \frac{3^{123}+1}{3^{125}+3}< \frac{3^{123}+1}{3^{125}+1}=A\)
Do đó \(A>B\).
Đề đúng là \(B=\frac{3^{122}+1}{3^{124}+1}\)nhé .
Ta có :
\(9A=9.\left(\frac{3^{123}+1}{3^{125}+1}\right)=\frac{3^{125}+9}{3^{125}+1}\)
\(=1+\frac{8}{3^{125}+1}\)
\(9B=9.\left(\frac{3^{122}+1}{3^{124}+1}\right)=\frac{3^{124}+9}{3^{124}+1}\)
\(=1+\frac{8}{3^{124}+1}\)
Dễ thấy \(3^{124}+1< 3^{125}+1\)
\(\Leftrightarrow\frac{8}{3^{125}+1}< \frac{8}{3^{124}+1}\)
\(\Leftrightarrow\frac{8}{3^{125}+1}+1< \frac{8}{3^{124}+1}+1\)
\(\Leftrightarrow A< B\)
Vậy....
Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\)N*)
Ta có:
\(A=\frac{3^{123}+1}{3^{125}+1}< \frac{3^{123}+1+2}{3^{125}+1+2}\)
\(A< \frac{3^{123}+3}{3^{125}+3}\)
\(A< \frac{3.\left(3^{122}+1\right)}{3.\left(3^{124}+1\right)}\)
\(A< \frac{3^{122}+1}{3^{124}+1}=B\)
=> A < B
\(9A=\frac{3^{125}+9}{3^{125}+1}=1+\frac{8}{3^{125}+1}\)
\(9B=\frac{3^{124}+9}{3^{124}+1}=1+\frac{8}{3^{124}+1}\)
Mà 3^125+1>3^124+1 =>\(\frac{8}{3^{125}+1}< \frac{8}{3^{124}+1}\)
Nên A<B