K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

Câu tương tự :

Gọi x,y,z là 3 phần chia ra từ A lần lượt tỉ lệ nghịch với 5, 2 và 4.

Theo đề bài, ta có: x^3 + y^3 + z^3 = 9512 (1)

x + y + z = A (2)

Gọi k là hằng số của hệ số nghịch đảo của x,y,z và 5,2,4.

Ta có x = k/5, y=k/2, z=k/4 (3)

Thay (3) vào (1) ta có:

k^3/5^3 + k^3/2^3 + k^3/4^3 = 9512 

-> k^3/125 + k^3/8 + k^3/64 = 9512

-> 64*k^3 + (125*8)k^3 + 125*k^3 = 9512 * 125 * 64

-> (64 + 1000 + 125)* k^3 = 76096000

-> k^3 = 76090000 / 1189 = 64000 = 64 * 1000 = 4^3 * 10^3 = (4*10)^3

-> k = 40

Suy ra: x = k/5 = 8, y = k/2 = 20, z = k/4 = 10

Theo (2) ta suy ra A = x+y+z = 8+20+10 = 38

23 tháng 11 2019

Gọi 3 phần đó là : \(a,b,c\left(a,b,c>0\right)\)

Theo bài ra ta có :

\(3a=5b=6c\)

\(\Rightarrow\frac{3a}{30}=\frac{5b}{30}=\frac{6c}{30}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)

\(\Rightarrow\frac{a^3}{1000}=\frac{b^3}{216}=\frac{c^3}{125}\) và \(a^3+b^3+c^3=10728\)

Áp dụng tính chất của dãy tỉ sô bằng nhau ta có :

\(\frac{a^3}{1000}=\frac{b^3}{216}=\frac{c^3}{125}=\frac{a^3+b^3+c^3}{1000+216+125}=\frac{10728}{1341}=8\)

\(\Rightarrow\hept{\begin{cases}\frac{a^3}{1000}=8\Rightarrow a^3=8000\Rightarrow a=20\\\frac{b^3}{216}=8\Rightarrow b^3=1728\Rightarrow b=12\\\frac{c^3}{125}=8\Rightarrow c^3=1000\Rightarrow c=10\end{cases}}\)

\(\Rightarrow M=20+12+10\)

\(\Rightarrow M=42\)

Vậy M =42 

Chúc bạn học tốt !!!

1 tháng 3 2020

a, Gọi 3 phần đó là \(x,y,z\)

Ta có: \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}\)và \(x+y+z=315\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{315}{0,7}=450\)

\(\frac{x}{\frac{1}{3}}=450\Leftrightarrow x=150\)

\(\frac{y}{\frac{1}{5}}=450\Leftrightarrow y=90\)

\(\frac{z}{\frac{1}{6}}=450\Leftrightarrow z=75\)

Vậy 3 phần đó là \(150;90;75\)

Mình làm hơi tắt, bạn thông cảm nhé!

2 tháng 1 2022

Answer:

Câu 1:

Gọi ba phần được chia từ số 470 lần lượt là x, y, z 

Có: Ba phần tỉ lệ nghịch với 3, 4, 5

\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)

\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)

Câu 2: 

Gọi ba phần được chia từ số 555 lần lượt là x, y, z

\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)

Câu 3:

Gọi ba phần được chia từ số 314 lần lượt là x, y, z

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)

3 tháng 1 2020

Câu hỏi của Phạm Minh Phương t - Toán lớp 7 - Học toán với OnlineMath

9 tháng 1 2022

Câu 1:

Gọi ba phần được chia từ số 470 lần lượt là x, y, z 

Có: Ba phần tỉ lệ nghịch với 3, 4, 5

⇒x3=y4=z5⇒x20=y15=z12⇒x3=y4=z5⇒x20=y15=z12 và x+y+z=470x+y+z=470

Áp dụng tính chất dãy tỉ số bằng nhau

x20=y15=z12=x+y+z20+15+12=47047=10x20=y15=z12=x+y+z20+15+12=47047=10

⇒\hept⎧⎨⎩x=200y=150z=120

 

29 tháng 7 2023

Gọi ba phần đó lần lượt là: \(x;y;z\) (\(x;y;z\) > 0)

Theo bài ra ta có: \(\dfrac{x}{\dfrac{1}{5}}\) = \(\dfrac{y}{\dfrac{1}{2}}\) ⇒ 5\(x\) = 2y ⇒ \(x\) = \(\dfrac{2}{5}\)y

                              \(\dfrac{y}{\dfrac{1}{3}}\) = \(\dfrac{z}{\dfrac{1}{7}}\) ⇒ 3y = 7z  ⇒ z = \(\dfrac{3}{7}\)y

⇒ \(\dfrac{2}{5}\)y+ y+ \(\dfrac{3}{7}\)y  = 640

⇒ y.( \(\dfrac{2}{5}\) + 1 + \(\dfrac{3}{7}\)) = 640

⇒y . \(\dfrac{64}{35}\) = 640

⇒ y = 640 : \(\dfrac{64}{35}\)

y = 350

\(x\) = 350  x \(\dfrac{2}{5}\) = 140

z = 350 x \(\dfrac{3}{7}\) = 150

 

9 tháng 3 2017

Gọi 3 phần lần lượt tìm là a,b,c :

5a = 2b , 3b = 7c biết rằng a + b + c = 640

\(\Leftrightarrow\frac{a}{2}=\frac{b}{5};\frac{b}{7}=\frac{c}{3}\)

\(\Leftrightarrow\frac{a}{14}=\frac{b}{35}=\frac{c}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{b}{35}=\frac{c}{15}=\frac{a+b+c}{14+35+15}=\frac{640}{64}=10\)

\(\Leftrightarrow\frac{a}{14}=10;\frac{b}{35}=10;\frac{c}{15}=10\)

\(\Leftrightarrow a=140;b=350;c=150\)

mình làm trước k nhe

29 tháng 11 2017

Giải:

Gọi ba số được chia lần lượt là a, b và c

Theo đề ra, ta có:

\(a+b+c=230\)

\(\left\{{}\begin{matrix}a.\dfrac{1}{3}=b.\dfrac{1}{2}\\a.\dfrac{1}{5}=c.\dfrac{1}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{c}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{15}=\dfrac{b}{10}\\\dfrac{a}{15}=\dfrac{c}{21}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=15.5\\b=10.5\\c=21.5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=75\\b=50\\c=105\end{matrix}\right.\)

Vậy ...

28 tháng 12 2021

Gọi 3 phần là a,b,c

Áp dụng tc dtsbn:

\(3a=5b=7c\Rightarrow\dfrac{3a}{105}=\dfrac{5b}{105}=\dfrac{7c}{105}\\ \Rightarrow\dfrac{a}{35}=\dfrac{b}{21}=\dfrac{c}{15}=\dfrac{a+b+c}{35+21+15}=\dfrac{284}{71}=4\\ \Rightarrow\left\{{}\begin{matrix}a=140\\b=84\\c=60\end{matrix}\right.\)

Vậy ...