So sánh A và B biết:
A= 102022 -1 / 102023 -1
B= 102023-1 / 102024 -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(10^{2023}+8\right)=8+10000...000\left(23so0\right)\)
có tổng các chữ số là \(1+8=9⋮9\)
\(\Rightarrow\left(10^{2023}+8\right)⋮9\)
b) \(\left(10^{19}+10^{18}+10^{17}\right)=10^{17}\left(10^2+10^1+1\right)\)
\(=10^{17}\left(100+10+1\right)=10^{16}.2.5.111\)
\(=10^{16}.2.555⋮555\)
\(\Rightarrow dpcm\)
a) ................. TCCS là 1 + 8 = 9 ⋮ 9
b) ................. = 1016.2.555 ⋮ 555
\(10A=\dfrac{10^{2021}+10}{10^{2021}+1}=\dfrac{\left(10^{2021}+1\right)+9}{10^{2021}+1}=\dfrac{10^{2021}+1}{10^{2021}+1}+\dfrac{9}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)
\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=\dfrac{\left(10^{2022}+1\right)+9}{10^{2022}+1}=\dfrac{10^{2022}+1}{10^{2022}+1}+\dfrac{9}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
Vì \(10^{2022}>10^{2021}=>10^{2021}+1< 10^{2022}+1\)
\(=>\dfrac{9}{10^{2021}+1}>\dfrac{9}{10^{2022}+1}\)
\(=>10A>10B\)
\(=>A>B\)
a: \(2\cdot f\left(3\right)=2\cdot\left(3^{19}+3^{18}+...+3+1\right)\)
Đặt B=3^19+3^18+...+3+1
=>3B=3^20+3^19+...+3^2+3
=>2B=3^20-1
=>2*f(3)=A
b: Chứng minh cái gì vậy bạn?
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai
a) \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)< 3^{32}-1=B\)
b) \(A=2011.2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1< 2012^2=B\)
A=B vì 10⋮1 nên A=1/10 và B=1/10.