K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEC và ΔAFB có

AE=AF

góc EAC chung

AC=AB

=>ΔAEC=ΔAFB

b: AE+EB=AB

AF+FC=AC

mà AE=AF và AB=AC

nên EB=FC

Xét ΔEBC và ΔFCB có

EB=FC

góc EBC=góc FCB

BC chung

=>ΔEBC=ΔFCB

a: Xét ΔBMC và ΔDMA có

MB=MD

góc BMC=góc DMA

MC=MA

=>ΔBMC=ΔDMA

=>góc MBC=góc MDA

=>BC//AD
b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hbh

=>AB=CD=CA và AD=BC

b,c: Đề sai rồi bạn

28 tháng 7 2023

cập nhật lại đề lần 1

Bài 1: 

a: Xét ΔABC có \(AC^2=AB^2+BC^2\)

nên ΔABC vuông tại B

b: XétΔABC có BC<AB<AC

nên \(\widehat{A}< \widehat{C}< \widehat{B}\)

loading...  loading...  

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó; ΔABD=ΔACD

b: Xét ΔDBC có DB=DC

nên ΔDBC cân tại D

hay \(\widehat{DBC}=\widehat{DCB}\)

16 tháng 5 2022

Sửa đề chứng minh tam giác ABC = tam giác ACD => △ABD = △ACD

Xét △ABD và △ACD có

AB = AC

AD là cạnh chung

\(\widehat{BAD}=\widehat{CAD}\)

nên  △ABD = △ACD (c-g-c)

b)

Ta có:

\(\text{△ABD = △ACD }\)

\(\text{=> DB = DC}\)

\(\text{=> △DBC cân tại D}\)

\(=>\)\(\widehat{DBC}=\widehat{DCB}\)

31 tháng 3 2022

mong mọi người giải nhanh

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA∼ΔABC

b: Xét ΔHCA vuôg tại H và ΔACB vuông tại A có

góc C chung

Do đó: ΔHCA∼ΔACB

12 tháng 5 2021

* Theo mình thì phần a) Góc A = 90 độ sẽ hợp lý hơn chứ. Vậy nên mình sẽ làm theo cả hai góc A 90 độ và 80 độ nhé ( Nhưng bài của mình phần b) sẽ theo góc A = 90 độ )

a)

Góc A = 80 độ thì sẽ có thể tam giác ABC là tam giác cân, tam giác ⊥ tại B hoặc C, tam giác ABC là tam giác tù hoặc tam giác nhọn

Góc A = 90 độ thì tam giác ABC là tam giác vuông tại A

b) 

Theo phần a), ta có: Tam giác ABC cân tại A

=> Góc B = góc C = ( 180 độ - 70 độ ) : 2 = 55 độ

1 tháng 7 2023

a) Do tam giác \(ABC\) cân tại A nên:

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\) và \(AB=AC\)

Xét \(\Delta BEC\) vuông tại E và \(\Delta CFB\) vuông tại F ta có:

\(\widehat{ECB}=\widehat{FBC}\)  (cmt)

Cạnh BC chung 

\(\Rightarrow\Delta BEC=\Delta CFB\) (cạnh huyền, góc nhọn)

b) Do \(\Delta BEC=\Delta CFB\) (cmt) \(\Rightarrow EB=FC\) (hai cạnh tương ứng)

Ta lại có: \(AB=AC\)

\(\Rightarrow AB-FB=AC-EC\) hay \(AF=AE\)

Xét \(\Delta AHF\) vuông tại F và \(\Delta AHE\) vuông tại E ta có:

\(AF=AE\left(cmt\right)\)

Cạnh AH chung

\(\Rightarrow\Delta AHF=\Delta AHE\) (cạnh huyền, cạnh góc vuông)