Chung to rang
a, 10^5 + 35 chia het cho 9 va 5
b, 10^5 + 98 chia het cho 2 va 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu bạn ko giúp ng khác thì cũng đừng mong đợi rằng họ sẽ giúp bạn
Để 35* chia hết cho 2
=> * = {2 ; 4 ; 6 ; 8}
Để 1*2 chia hết cho 3
=> 1 + 2 + * chia hết cho 3
=> 3 + * chia hết cho 3
=> * = {0;3;6;9}
Để 1*5* chia hết cho 5
=> dấu * thứ 2 = {0 ; 5)
Với * thứ 2 = 0
=> 1 + * + 5 + 0 chia hết cho 9
=> 6 + * chia hết cho 9
=> * thứ 1 = 3
Với dấu sao thứ 2 = 5
=> 1 + * + 5 + 5 chia hết cho 9
=> 11 + * chia hết cho 9
=> * thứ 1 = 7
a) ta thấy 6100 có chử số hàng dơn vị là 6
=>6100-1 có chữ số hàng đơn vị là 5
=>6100 chia hết cho 5
b) vì 1n=1 nên 3130 và 1110 có chữ hàng đơn vị là 1 =>3130-1110 có hàng đơn vị là 0
=>3130-1110 chia hết cho 2 và 5
2.
De 49ab chia het cho 5, suy ra b thuoc {0;5}
De 49ab chia het cho 2, suy ra b=0
Ta xet: 49ab co 4+9+a+0 chia het cho 9
=13+a chia het cho 9
Vay a =5
Suy ra a=5 va b=0 de 49ab chi het cho 2,5 va 9
1)
a)
=10...0+5
=10..05 chia hết cho 5
=1+0+5=6 chia hết cho3
b)10...0+44
=10...04 chia hết cho 2
=1+0+0+4+4=9 chia hết cho 9
n là stn => n= 3k hoặc n=3k + 1 hoặc n= 3k + 2 (k thuộc N)
với n=3k
ta có : 3k ( 3k + 1) (3k +5)
3k chia hết 3 => 3k ( 3k + 1) ( 3k + 5) chia hết cho 3
hay: n(n+1)(n+5) chia hết cho 3
với n=3k+1
ta có : (3k+1)(3k+1+1)(3k+1+5)
=(3k+1)(3k+2)(3k+6)
=3(3k+1)(3k+2)(k+2) chia hết cho 3
hay : n(n+1)(n+5) chia hết cho 3
với n= 3k+ 2
ta có : (3k+2)(3k+2+1)(3k+2+5)
=(3k+2)(3k+3)(3k+7)
=3(3k+2)(k+1)(3k+7) chia hết cho 3
hay : n(n+1)(n+5) chia hết cho 3
Vậy với mọi stn n thì n(n+1)(n+5) chia hết cho 3
a)123-5 .(x+5)= 48
5.(x+5) = 123 -48
5.(x+5) = 75
(x+5) = 75 : 5
( x+5) = 15
x = 15 - 5
x = 10
c; 15 ⋮ \(x+1\) (\(x\in\) N)
\(x+1\) \(\in\) Ư(15)
15 = 3.5
\(x+1\in\) Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
Lập bảng ta có:
\(x+1\) | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
\(x\) | -16 | -6 | -4 | -2 | 0 | 2 | 4 | 14 |
\(x\) \(\in\) N | loại | loại | loại | loại |
Theo bảng trên ta có: \(x\in\) {0; 2; 4; 14}
Vậy \(x\in\) {0; 2; 4; 14}
105+35=100000+35=100035
Vì tổng các chữ số của 105+35 là: 1+0+0+0+3+5=9 chia hết cho 9 nên 105+35 chia hết cho 9 (1)
Vì 105+35 có tận cùng là 5 nên 105+35 chia hết cho 5 (2)
Từ (1) và (2) ta có điều phải chứng minh
b, 105+98=100000+98=100098
Vì 105+98 có tận cùng là 8 nên 105+98 chia hết cho 2 (1)
Vì tổng các chữ số của 105+98 là: 1+0+0+0+9+8=18 chia hết cho 9 nên 105+98 chia hết cho 9 (2)
Từ (1) và (2) ta có điều phải chứng minh
a) 105 + 35 = 100000 + 35 = 100035 chia hết cho 9 và 5.
b) 105 + 98 = 100000 + 98 = 100098 chia hết cho 2 và 9.