Cho:a,b thuộc R. CM: 2(a^4 + b^4) >= ab^3 + a^3b + 2a^2b^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề hoàn toàn đúng mà: Ta có
\(\left(a^4+b^4\right)-\left(a^3b+ab^3\right)=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\). (Ở đây chú ý rằng \(a^2+ab+b^2=\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\)).
Mặt khác \(\left(a^4+b^4\right)-2a^2b^2=\left(a^2-b^2\right)^2\ge0.\)
Cộng hai bất đẳng thức lại ta có điều phải chứng minh.
Giả sử \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\)
\(\Leftrightarrow2a^4+2b^4-a^3b-ab^3-2a^2b^2\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)+\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)+\left(a^2-b^2\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)+\left(a^2-b^2\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\) \(\forall a;b\) \(\left(1\right)\)
Lại có: \(a^2-ab+b^2=\left(a^2-2.a.\frac{b}{2}+\frac{b^2}{4}\right)+\frac{3b^2}{4}\)
\(=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\) \(\forall a;b\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\forall a;b\)
\(\Leftrightarrow2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\forall a;b\)
Vậy \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\) với mọi a;b
3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath
\(2\left(a^4+b^4\right)\ge ab^3+a^3b+2a^2b^2\)
\(\Leftrightarrow2\left(a^4+b^4\right)-ab^3-a^3b-2a^2b^2\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)+\left(b^4-ab^3\right)+\left(a^4+b^4-2a^2b^2\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)+\left(a+b\right)^2\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)+\left(a+b\right)^2\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)\left(a-b\right)+\left(a+b\right)^2\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{2}\right]+\left(a+b\right)^2\left(a-b\right)^2\ge0\)
Xảy ra khi \(a=b=0\)
Ta có a4 + b4 - a3 b - ab3 = (a - b)(a3 - b3)
= (a -b)2 (a2 + ab + b2)
= (a - b)2 [\(\frac{3b^2}{4}+\left(a+\frac{b}{2}\right)^2\)]\(\ge0\)
Ta lại có a4 + b4 \(\ge2a^2b^2\)
Từ đó => 2(a4 + b4) \(\ge\)ab3 + a3 b + 2 a2 b2
\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\cdot\left(a^{ }^2+b^2\right)\ge2ab\cdot\frac{\left(a+b\right)^2}{2}=ab\cdot\left(a+b\right)^2=ab^3+2a^2b^2+a^3b\)
Áp dụng BĐT Bunhiacopxki, ta có:
\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)\(\ge4a^2b^2\)(BĐT Cô-si)
Có: \(ab^3+a^3b=ab\left(a^2+b^2\right)\)
Áp dụng BĐT Cô-si, ta có:
\(ab\left(a^2+b^2\right)\ge2a^2b^2\)
\(\Rightarrow ab^3+a^3b+2a^2b^2\ge4a^2b^2\)
Vậy VT=VP.
Ta có đpcm.