K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2015

Đề hoàn toàn đúng mà: Ta có

\(\left(a^4+b^4\right)-\left(a^3b+ab^3\right)=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\).  (Ở đây chú ý rằng \(a^2+ab+b^2=\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\)).

Mặt khác \(\left(a^4+b^4\right)-2a^2b^2=\left(a^2-b^2\right)^2\ge0.\)

Cộng hai bất đẳng thức lại ta có điều phải chứng minh.

18 tháng 8 2015

Đề có sai ko bạn

7 tháng 12 2017

Giả sử \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\)

\(\Leftrightarrow2a^4+2b^4-a^3b-ab^3-2a^2b^2\ge0\)

\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)+\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)+\left(a^2-b^2\right)^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)+\left(a^2-b^2\right)^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\) \(\forall a;b\)                   \(\left(1\right)\)

Lại có: \(a^2-ab+b^2=\left(a^2-2.a.\frac{b}{2}+\frac{b^2}{4}\right)+\frac{3b^2}{4}\)

                                         \(=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\) \(\forall a;b\)                          \(\left(2\right)\)

Từ (1) và (2) suy ra  \(\left(a-b\right)^2\left(a^2-ab+b^2\right)+\left(a^2-b^2\right)^2\ge0\forall a;b\)

\(\Leftrightarrow2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\forall a;b\)

Vậy \(2\left(a^4+b^4\right)\ge a^3b+ab^3+2a^2b^2\) với mọi a;b

11 tháng 9 2016

Ta có a+ b- a3 b - ab= (a - b)(a3 - b3)

= (a -b)2 (a2 + ab + b2)

= (a - b)2 [\(\frac{3b^2}{4}+\left(a+\frac{b}{2}\right)^2\)]\(\ge0\)

Ta lại có a4 + b4 \(\ge2a^2b^2\)

Từ đó => 2(a4 + b4\(\ge\)ab3 + a3 b + 2 a2 b2

11 tháng 10 2020

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\cdot\left(a^{ }^2+b^2\right)\ge2ab\cdot\frac{\left(a+b\right)^2}{2}=ab\cdot\left(a+b\right)^2=ab^3+2a^2b^2+a^3b\)

4 tháng 9 2021
Chúc ngủ ngonDạo này có gì mới không?Chúc mừng sinh nhật
18 tháng 10 2016

\(a^4+b^4\ge2a^3b+2ab^3-2a^2b^2\)

\(\Leftrightarrow\left(a^4-2a^3b+a^2b^2\right)+\left(b^4-2ab^3+a^2b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-ab\right)^2+\left(b^2-ab\right)^2\ge0\) (đúng)

\(\Rightarrow\)Điều phải chứng minh

3 tháng 12 2017

4 + b 4 ≥ 2a 3b + 2ab 3 − 2a 2b 2

⇔ a 4 − 2a 3b + a 2b 2 + b 4 − 2ab 3 + a 2b 2 ≥ 0

⇔ a 2 − ab 2 + b 2 − ab 2 ≥ 0 (đúng)

⇒Điều phải chứng minh

 chúc cậu hok tốt @_@

NV
21 tháng 1 2021

Đặt vế trái của BĐT là P:

\(P=\sqrt{\left(a+2\right)\left(b+2\right)}+\sqrt{2b.\left(a+1\right)}\)

\(P\le\dfrac{1}{2}\left(a+2+b+2\right)+\dfrac{1}{2}\left(2b+a+1\right)\)

\(P\le\dfrac{1}{2}\left(2a+3b+5\right)=\dfrac{1}{2}.2024=1012\)

Dấu "=" không xảy ra

Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có: \({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\) Bài 2: Chứng minh rằng với mọi số thực x,y ta có: \(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\) Bài 3: Cho x,y,z thuộc R. Chứng minh rằng: \(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\) Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\) Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq...
Đọc tiếp

Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có:

\({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\)

Bài 2: Chứng minh rằng với mọi số thực x,y ta có:

\(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\)

Bài 3: Cho x,y,z thuộc R. Chứng minh rằng:

\(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\)

Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\)

Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq xy\)

Bài 6: Cho x,y>=1. Chứng minh rằng: \({1\over 1+x^2}+{1\over 1+y^2}\geq {2\over 1+xy}\)

Bài 7: Chứng minh rằng với mọi số thực a,b ta có:

\(2(a^4+b^4)\geq ab^3+a^3b+2a^2b^2\)

Bài 8: Cho hai số thực x,y khác không. Chứng minh rằng:

\({4x^2y^2\over (x^2+y^2)^2}+{x^2\over y^2}+{y^2\over x^2}\geq 3\)

Bài 9: Cho các số thực a,b cùng dấu. Chứng minh bất đẳng thức:

\(({(a^2+b^2)\over 2})^3\leq({(a^3+b^3)\over 2})^2\)

Bài 10: Cho các số thực dương a,b. Chứng minh các bất đẳng thức sau:

\({a^2b\over(2a^3+b^3)}+{2\over 3} \leq {(a^2+2ab)\over (2a^2+b^2)}\)

Bài 11: Cho các số thực a,b không đồng thời bằng 0. Chứng minh:

\({2ab\over (a^2+4b^2)}+{b^2\over (3a^2+2b^2)}\leq {3\over 5}\)

@Akai Haruma

12
12 tháng 6 2018

Bài 1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy

⇒ x2 + y2 ≥ 2xy

\(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\) ≥ 2

\(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2

⇒ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\)) ≥ 6 ( 1)

CMTT : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\)\(6\) ( 2)

Từ ( 1 ; 2) ⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\))

Đẳng thức xảy ra khi : x = y

12 tháng 6 2018

Bài 4. Do : a ≥ 4 ; b ≥ 4 ⇒ ab ≥ 16 ( * ) ; a + b ≥ 8 ( ** )

Áp dụng BĐT Cauchy , ta có : a2 + b2 ≥ 2ab = 2.16 = 32 ( *** )

Từ ( * ; *** ) ⇒ a2 + b2 + ab ≥ 16 + 32 = 48 ( 1 )

Từ ( ** ) ⇒ 6( a + b) ≥ 48 ( 2)

Từ ( 1 ; 2 ) ⇒a2 + b2 + ab ≥ 6( a + b)

Đẳng thức xảy ra khi a = b = 4