tìm số ngyên n biết
A 2n+3:n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3584 là bội của 2n- 3
ta thấy n = 2
b) 2n-5 chia hết cho n-4
ta thấy n = 5
nha bạn chúc bạn học tốt ạ
a) Ta có :
\(2n+7=2n-6+13=2\left(n-3\right)+13\)chia hết cho \(n-3\)\(\Rightarrow\)\(13\)chia hết cho \(n-3\)\(\Rightarrow\)\(\left(n-3\right)\inƯ\left(13\right)\)
Mà \(Ư\left(13\right)=\left\{1;-1;13;-13\right\}\)
Do đó :
\(n-3=1\Rightarrow n=1+3=4\)
\(n-3=-1\Rightarrow n=-1+3=2\)
\(n-3=13\Rightarrow n=13+3=16\)
\(n-3=-13\Rightarrow n=-13+3=-10\)
Vậy \(n\in\left\{4;2;16;-10\right\}\)
b) Ta có :
\(n+11=n-8+19\)chia hết cho \(n-8\)\(\Rightarrow\)\(19\)chia hết cho \(n-8\)\(\Rightarrow\)\(\left(n-8\right)\inƯ\left(19\right)\)
Mà \(Ư\left(19\right)=\left\{1;-1;19;-19\right\}\)
Do đó :
\(n-8=1\Rightarrow n=1+8=9\)
\(n-8=-1\Rightarrow n=-1+8=7\)
\(n-8=19\Rightarrow n=19+8=27\)
\(n-8=-19\Rightarrow n=-19+8=-11\)
Vậy \(n\in\left\{9;7;27;-11\right\}\)
1, Ta có a^3+b^3+c^3=3abc
-> a^3+b^3+c^3+3a^2b+3ab^2=3abc+3a^2b+3ab^2
-> (a+b)3 + c^3 - 3ab(a+b+c)=0
-> (a+b+c). ((a+b)^2-(a+b).c+c^2)-3ab(a+b+c)=0
-> (a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)=0
Th1: a+b+c=0
->P= a+b/2 . b+c/2 . c+a/2
= (-c)(-a)(-b)/2=-1
TH2 a^2+b^2+c^2-ab-bc-ca=0
->2a^2+2b^2+2c^2-2ab-abc-2ac=0
->(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)=0
-> (a-b)^2+(a-c)^2+(b-c)^2=0
Mà (a-b)^2+(a-c)^2+(b-c)^2>= 0
Dấu = xảy ra (=)a-b=0
b-c=0
a-c=0
-> a=b=c
->P= 1+a/b+1+b/c+1+c/a=2+2+2= 8
tìm số ngyên n biết : 81<3^n<729
Ta có 81=34 ; 729=36
=> 34<3n<36
=>4<n<6
=>n = 5
Vậy n = 5
Tk nha
Gọi d = ƯCLN(2n + 3; n + 2) (d \(\in\)N*)
=> 2n + 3 chia hết cho d; n + 2 chia hết cho d
=> 2n + 3 chia hết cho d; 2.(n + 2) chia hết cho d
=> 2n + 3 chia hết cho d; 2n + 4 chia hết cho d
=> (2n + 4) - (2n + 3) chia hết cho d
=> 2n + 4 - 2n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d \(\in\)N* => d = 1
=> ƯCLN(2n + 3; n + 2) = 1
=> 2n + 3 và n + 2 là 2 số nguyên tố cùng nhau
Chứng tỏ với mọi số tự nhiên n thì 2 số 2n + 3 và n + 2 là 2 số nguyên tố cùng nhau
\(\Leftrightarrow2^n.\left(2^{-1}+4\right)=9.2^5\)
\(\Leftrightarrow2^n.4,5=4,5.2^6\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
\(\frac{1}{27}\cdot81^n=3^n\)
\(\Leftrightarrow3^{-3}\cdot3^{4n}=3^n\)
\(\Leftrightarrow3^{4n-3}=3^n\)
\(\Leftrightarrow4n-3=n\)
\(\Leftrightarrow n=1\) ( thỏa mãn n nguyên dương )
Vậy : \(n=1\)
\(\frac{1}{27}.81^n=3^n\)
<=>\(\frac{81^n}{27}=3^n\)
<=>\(\frac{\left(3^4\right)^n}{3^3}=3^n\)
<=>\(\frac{3^{4n}}{3^3}=3^n\)
<=>\(3^3=3^{4n}:3^n\)
<=>\(3^3=3^{3n}\)
<=>\(3=3n\)
<=>\(n=1\)
Vậy \(n=1\)