Có mấy số nguyên n để cả hai phân số sau đều có giá trị là số nguyên \(\frac{7n-1}{4}\) và \(\frac{5n+3}{12}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
AH
Akai Haruma
Giáo viên
4 tháng 10
Lời giải:
Với $n$ nguyên, để $\frac{3n+4}{n-1}$ nguyên thì:
$3n+4\vdots n-1$
$\Rightarrow 3(n-1)+7\vdots n-1$
$\Rightarrow 7\vdots n-1$
$\Rightarrow n-1\in \left\{\pm 1; \pm 7\right\}$
$\Rightarrow n\in \left\{2; 0; 8; -6\right\}$
Thử các giá trị này của $n$ vào $\frac{6n-3}{3n+1}$ thì $n=0$ là TH duy nhất thỏa mãn $\frac{6n-3}{3n+1}$ cũng là số nguyên.
20 tháng 1 2017
\(\frac{7n+15}{n-3}=\frac{7n-21}{n-3}+\frac{36}{n-3}=\frac{7.\left(n-3\right)}{n-3}+\frac{36}{n-3}=7+\frac{36}{n-3}\)
7 là số nguyên =>để ps trên là số nguyên thì n-3 phải là ước của 36
\(\Rightarrow n-3\in\left\{1;2;3;4;6;9;12;18;36\right\}\)
\(n\in\){4;5;6;7;9;12;15;21;39}
Vậy có 9 gtrị n thỏa mãn