K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 10

Lời giải:

Với $n$ nguyên, để $\frac{3n+4}{n-1}$ nguyên thì:

$3n+4\vdots n-1$
$\Rightarrow 3(n-1)+7\vdots n-1$

$\Rightarrow 7\vdots n-1$

$\Rightarrow n-1\in \left\{\pm 1; \pm 7\right\}$

$\Rightarrow n\in \left\{2; 0; 8; -6\right\}$

Thử các giá trị này của $n$ vào $\frac{6n-3}{3n+1}$ thì $n=0$ là TH duy nhất thỏa mãn $\frac{6n-3}{3n+1}$ cũng là số nguyên.

kết bạn mình nha

20 tháng 1 2017

\(\frac{7n+15}{n-3}=\frac{7n-21}{n-3}+\frac{36}{n-3}=\frac{7.\left(n-3\right)}{n-3}+\frac{36}{n-3}=7+\frac{36}{n-3}\)

7 là số nguyên =>để ps trên là số nguyên thì n-3 phải là ước của 36

\(\Rightarrow n-3\in\left\{1;2;3;4;6;9;12;18;36\right\}\)

\(n\in\){4;5;6;7;9;12;15;21;39}

Vậy có 9 gtrị n thỏa mãn

20 tháng 1 2017

9 giá trị