giải giúp em câu 3,4 tự luận với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do d' là ảnh của d qua phép tịnh tiến nên d' cùng phương với d
\(\Rightarrow\) Phương trình d' có dạng: \(x-2y+c=0\)
Chọn \(A\left(-1;0\right)\) là 1 điểm thuộc d
Gọi \(A'\left(x';y'\right)\) là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)
\(\left\{{}\begin{matrix}x'=-1+\left(-1\right)=-2\\y'=0+3=3\end{matrix}\right.\) \(\Rightarrow A'\left(-2;3\right)\)
Thế vào pt d':
\(-2-2.3+c=0\Rightarrow c=8\)
Vậy pt d' có dạng: \(x-2y+8=0\)
Cách làm nói chung:
- Tìm vecto chỉ phương \(\overrightarrow{u}\) của đường d và vtpt \(\overrightarrow{n}\) của mặt (P)
- Tính tích có hướng \(\overrightarrow{u_1}=\left(\overrightarrow{u};\overrightarrow{n}\right)\)
- Tiếp tục tính tích có hướng \(\overrightarrow{u_2}=\left[\overrightarrow{u_1};\overrightarrow{n}\right]\)
- Tìm tọa độ giao điểm M của d và (P)
- Hình chiếu vuông góc của d lên (P) sẽ đi qua M và nhận \(\overrightarrow{u_2}\) (hoặc 1 vecto cùng phương với nó) là 1 vtcp
Lưu ý rằng có vô số cách viết 1 pt đường thẳng (tùy thuộc cách chọn điểm) nên có thể trong 4 đáp án của đề bài không đáp án nào giống pt vừa viết được. Lúc đó cần kiểm tra bằng cách: 1. Loại những đáp án không giống vecto chỉ phương. 2. Trong những đáp án còn lại, tìm 1 điểm trên đó và thay vào pt đường thẳng vừa viết được, nếu thỏa mãn thì đó là đáp án đúng.
1209.
d nhận \(\overrightarrow{u}=\left(1;1;-1\right)\) là 1 vtcp
(P) nhận \(\overrightarrow{n}=\left(1;2;1\right)\) là 1 vtpt
Ta có: \(\overrightarrow{u_1}=\left[\overrightarrow{u};\overrightarrow{n}\right]=\left(3;-2;1\right)\)
\(\overrightarrow{u_2}=\left[\overrightarrow{u_1};\overrightarrow{n}\right]=\left(-4;-2;8\right)=-2\left(2;1;-4\right)\)
Phương trình d dạng tham số: \(\left\{{}\begin{matrix}x=t\\y=1+t\\z=2-t\end{matrix}\right.\)
Gọi M là giao điểm d và (P), tọa độ M thỏa mãn:
\(t+2\left(1+t\right)+2-t-4=0\Rightarrow t=0\Rightarrow M\left(0;1;2\right)\)
Do đó hình chiếu của d lên (P) nhận (2;1;-4) là 1 vtcp và đi qua M(0;1;2)
Phương trình: \(\dfrac{x}{2}=\dfrac{y-1}{1}=\dfrac{z-2}{-4}\)
Câu 1210 hoàn toàn tương tự
bn tìm ảnh của một điểm bất kì nằm trên đường thẳng qua phép tịnh tiến
vd : bn ra là m phẩy thông qua x và y r thay m phẩy vào phương trình cũ là ra
Câu 1:
uses crt;
var a:array[1..100]of integer;
n,i,t:integer;
begin
clrscr;
readln(n);
for i:=1 to n do readln(a[i]);
t:=0;
for i:=1 to n do
if a[i] mod 2<>0 then t:=t+a[i];
writeln(t);
readln;
end.
Câu 3:
\(n_{CO_2}=\dfrac{0,44}{44}=0,01\left(mol\right)\)
\(n_{H_2O}=\dfrac{0,18}{18}=0,01\left(mol\right)\)
Bảo toàn C: nC(A) = 0,01 (mol)
Bảo toàn H: nC(A) = 2.0,01 = 0,02 (mol)
=> \(n_O=\dfrac{0,3-0,01.12-0,02.1}{16}=0,01\left(mol\right)\)
nC : nH : nO = 0,01 : 0,02 : 0,01 = 1:2:1
=> CTHH: (CH2O)n
Có\(n_{O_2}=\dfrac{0,32}{32}=0,01\left(mol\right)=>M_A=\dfrac{0,3}{0,01}=30\left(g/mol\right)\)
=> n = 1
=> CTHH: CH2O
Câu 4:
\(n_{NO_2}=\dfrac{5,152}{22,4}=0,23\left(mol\right)\)
PTHH: Cu + 4HNO3 --> Cu(NO3)2 + 2NO2 + 2H2O
_____a---------------------------------->2a
Fe + 6HNO3 --> Fe(NO3)3 + 3NO2 + 3H2O
b---------------------------------->3b
=> \(\left\{{}\begin{matrix}64a+56b=5,36\\2a+3b=0,23\end{matrix}\right.=>\left\{{}\begin{matrix}a=0,04\\b=0,05\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\%Cu=\dfrac{0,04.64}{5,36}.100\%=47,76\%\\\%Fe=\dfrac{0,05.56}{5,36}.100\%=52,24\%\end{matrix}\right.\)