Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tìm ảnh của một điểm bất kì nằm trên đường thẳng qua phép tịnh tiến
vd : bn ra là m phẩy thông qua x và y r thay m phẩy vào phương trình cũ là ra
Câu 1: Ý C
PT \(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\) mà\(x\in\left(0;2\pi\right)\)
Có 3 nghiệm
Câu 2: Ý A
PT \(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\) mà \(0\le x< \dfrac{\pi}{2}\)
\(\Rightarrow x=\dfrac{\pi}{6}\)
1.
\(y'=\left(cos^2\left(2x+3\right)\right)'=2cos\left(2x+3\right).\left(cos\left(2x+3\right)\right)'\)
\(=2cos\left(2x+3\right).\left(-sin\left(2x+3\right)\right).\left(2x+3\right)'\)
\(=-4sin\left(2x+3\right).cos\left(2x+3\right)\)
\(=-4sin\left(4x+6\right)\)
2.
\(f'\left(x\right)=-x^2+\left(3m-2\right)x-\left(2m^2-5m-2\right)\)
Để \(f'\left(x\right)< 0;\forall x\in R\)
\(\Leftrightarrow\Delta=\left(3m-2\right)^2-4\left(2m^2-5m-2\right)< 0\)
\(\Leftrightarrow m^2+8m+12< 0\)
\(\Rightarrow-6< m< -2\)
1.
\(\left\{{}\begin{matrix}x_{A'}=x_A+\left(-1\right)=2\\y_{A'}=y_A+3=0\end{matrix}\right.\) \(\Rightarrow A'\left(2;0\right)\)
2.
\(\overrightarrow{MP}=\left(4;2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_{N'}=x_N+4=-4+4=0\\y_{N'}=y_N+2=1+2=3\end{matrix}\right.\)
\(\Rightarrow N'\left(0;3\right)\)
3.
\(\overrightarrow{MM'}=\left(13;7\right)\Rightarrow\overrightarrow{v}=\overrightarrow{MM'}=\left(13;7\right)\)
4.
\(\overrightarrow{MN}=\left(-2;-1\right)\Rightarrow MN=\sqrt{\left(-2\right)^2+\left(-1\right)^2}=\sqrt{5}\)
\(\Rightarrow M'N'=MN=\sqrt{5}\)
5.
Gọi G là trọng tâm ABC \(\Rightarrow G\left(2;1\right)\)
\(\overrightarrow{BC}=\left(-6;-3\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_{G'}=2-6=-4\\y_{G'}=1-3=-2\end{matrix}\right.\) \(\Rightarrow G'\left(-4;-2\right)\)
1.
\(2sinx+cosx=4\)
\(\Leftrightarrow\sqrt{5}\left(\dfrac{2}{\sqrt{5}}sinx+\dfrac{1}{\sqrt{5}}cosx\right)=4\)
\(\Leftrightarrow sin\left(x+arccos\dfrac{2}{\sqrt{5}}\right)=\dfrac{4}{\sqrt{5}}>1\)
\(\Rightarrow2sinx+4cosx-4\ne0\)
Khi đó:
\(2P.sinx+P.cosx-4P=sinx-2cosx-3\)
\(\Leftrightarrow\left(2P-1\right)sinx+\left(P+2\right)cosx=4P-3\)
Phương trình có nghiệm khi:
\(\left(2P-1\right)^2+\left(P+2\right)^2\ge\left(4P-3\right)^2\)
\(\Leftrightarrow4P^2-4P+1+P^2+4P+4\ge16P^2+9-24P\)
\(\Leftrightarrow11P^2-24P+4\le0\)
\(\Leftrightarrow\dfrac{2}{11}\le P\le2\)
\(\Rightarrow maxP=2\)
Do d' là ảnh của d qua phép tịnh tiến nên d' cùng phương với d
\(\Rightarrow\) Phương trình d' có dạng: \(x-2y+c=0\)
Chọn \(A\left(-1;0\right)\) là 1 điểm thuộc d
Gọi \(A'\left(x';y'\right)\) là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)
\(\left\{{}\begin{matrix}x'=-1+\left(-1\right)=-2\\y'=0+3=3\end{matrix}\right.\) \(\Rightarrow A'\left(-2;3\right)\)
Thế vào pt d':
\(-2-2.3+c=0\Rightarrow c=8\)
Vậy pt d' có dạng: \(x-2y+8=0\)