giải hộ mình bài 4 với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
\(A=7^{4n}-1\)
\(=\left(7^4\right)^n-1\)
\(=\left(7^4-1\right)\cdot\left(7^{4\left(n-1\right)}+7^{4\left(n-2\right)}+...+1\right)\)
\(=\left(7^2-1\right)\left(7^2+1\right)\left(7^{4n-4}+7^{4n-8}+...+1\right)\)
\(=50\cdot48\cdot\left(7^{4n-4}+7^{4n-8}+...+1\right)⋮5\)
Bài 3:
1: Ta có: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+2}{x-4}\)
\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
Câu 1: Vì (d') vuông góc với (d) nên \(a\cdot\dfrac{-1}{3}=-1\)
hay a=3
Vậy: (d'): y=3x+b
Thay x=4 và y=-5 vào (d'), ta được:
b+12=-5
hay b=-17
\(M=\dfrac{10n+25}{2n+4}=\dfrac{5\left(2n+5\right)}{2n+4}=5\cdot\dfrac{2n+4}{2n+4}+\dfrac{1}{2n+4}\)
để M ∈ Z
=> \(2n+4\inƯ\left\{1\right\}=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}2n+4=1\\2n+4=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n=-3\\2n=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n=-\dfrac{3}{2}\\n=-\dfrac{5}{2}\end{matrix}\right.\) thì M ∈Z
\(1,\\ a,=5x^2-3xy+1\\ b,=\dfrac{x^2-3x}{2x-6}=\dfrac{x\left(x-3\right)}{2\left(x-3\right)}=\dfrac{x}{2}\\ c,=\dfrac{2x}{x+5}\cdot\dfrac{\left(x-5\right)\left(x+5\right)}{6x^2}=\dfrac{x-5}{3x}\\ 2,\\ a,\Leftrightarrow\left(x+3-4\right)\left(x+3+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\\ b,\left(5n+2\right)^2-4=\left(5n+2+2\right)\left(5n+2-2\right)=5n\left(5n+4\right)⋮5\left(5⋮5\right)\)