Cho A = 2 mũ 0 + 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + ...... + 2 mũ 2018 và 2 mũ 2019. Chứng minh rằng A và B là hai số tự nhiên liên tiếp
Giúp mình với! Mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 1 + 2 + 22 + 23 + ... + 219
=> 2A = 2 + 22 + 23 + 24 + ... + 220
=> 2A - A = (2 + 22 + 23 + 24 + ... + 220) - (1 + 2 + 22 + 23 + ... + 219)
=> A = 220 - 1
Lại có B = 220
=> A và B là 2 số tự nhiên liên tiếp
Ta có: \(A=2^0+2^1+2^2+2^3+...+2^{19}\)
\(\Leftrightarrow2A=2^1+2^2+2^3+2^4...+2^{20}\)
\(\Leftrightarrow2A-A=\left(2^1+2^2+2^3+2^4...+2^{20}\right)-\left(2^0+2^1+2^2+2^3+...+2^{19}\right)\)
\(\Leftrightarrow A=2^{20}-1\)
Vì \(2^{20}-1\)và \(2^{20}\)là 2 STN liên tiếp
\(\Rightarrow\)\(A\)và \(B\)là 2 STN liên tiếp
a)xét 2A =2+2^2+2^3+.....+2^2019
-A=1+2+2^2+...+2^2018
A=(2^2019)-1 <2^2019
b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)
2019=x+1 =>x=2018
\(A=1+2+2^2+2^3+...+2^{1016}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2016}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2017}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)
\(A=2^{2017}-1\)
\(B=2^{2017}\)
=> A và B là hai số tự nhiên liên tiếp
\(a^2+c^2=b^2+d^2\)
\(\Leftrightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)⋮2\)
Ta có
\(a^2+b^2+c^2+d^2+\left(a+b+c+d\right)=\)
\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)
Ta thấy
\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số TN liên tiếp nên chúng chia hết cho 2
\(\Rightarrow a^2+b^2+c^2+d^2+\left(a+b+c+d\right)⋮2\)
Mà \(a^2+b^2+c^2+d^2⋮2\left(cmt\right)\)
\(\Rightarrow a+b+c+d⋮2\)
Mà a+b+c+d là các số TN khác 0 => a+b+c+d>2
=> a+b+c+d là hợp số
A = [(a +b) + (c + d)].[(a + b) + (c + d)]
A = (a + b).(a + b) + (a +b).(c + d) + (c + d).(a + b) + (c+d).(c+d)
A = a2 + ab + ab + b2 + 2.(a+b).(c+d) + c2 + cd + cd + d2
A = a2 + b2 + c2 + d2 + 2ab + 2.(a +b).(c + d) + 2cd
A = a2 + b2 + a2 + b2 + 2. [ab + (a + b).(c + d) + cd]
A = 2.(a2 + b2) + 2.[ab + (a + b)(c + d) + cd]
⇒ A ⋮ 2 ⇒ a + b + c + d ⋮ 2 mà a; b;c;d là số tự nhiên nên a + b + c + d > 2
Hay A ⋮ 1; 2; A vậy A là hợp số (đpcm)
A<1/1*2+1/2*3+...+1/2021*2022
=>A<1-1/2+1/2-1/3+...+1/2021-1/2022<1
B = 2^2023 chứ nhỉ
A = 2^0 + 2^1 + 2^2 + ... + 2^2022
2A = 2^1 + 2^2 + 2^3 + ... + 2^2023
=> 2A - A = (2^1 + 2^2 + ... + 2^2023) - (2^0 + 2^1 + 2^2 + ... + 2^2021)
=> A = 2^2023 - 2^0
=> A = 2^2023 - 1
=> A và B là 2 stn liên tiếp
Ta có:
A=20+21+22+...+22020+22021A=20+21+22+...+22020+22021
⇔2A=21+22+23+...+22021+22022⇔2A=21+22+23+...+22021+22022
⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)
⇔A=22022−20⇔A=22022−20
⇔A=22022−1⇔A=22022−1
Mà B=22022⇒B=A+1B=22022⇒B=A+1
⇒A⇒A và BB là 22 số tự nhiên liên tiếp.
chúc học tốt.
a) 1 + 3 + 5 + ... + 13
= (13 + 1).[(13 - 1) : 2 + 1] : 2
= 14 . 7 : 2
= 49
= 7²
b) 3² + 4² + 12²
= 9 + 16 + 144
= 169
= 13²
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
Giúp mình bài này nữa với. Khó quá >^<
Học sinh lớp 6A khi chia tổ. Nếu chia 4 tổ; 5 tổ; 8 tổ đều vừa đủ. Tính số học sinh của lớp 6A. Biết rằng số h/s lớp đó có khoảng từ 35 đến 45 em.
Nhanh giúp mik với chứ chiều mình thi rồi ToT
2A=2+2^2+...+2^2019
=>A=2^2019-1
=>A và B là hai số liên tiếp