Cho hình chóp S.ABC có SA=SB=SC, góc A S B ^ = 90 0 , B S C ^ = 60 0 , A S C ^ = 120 0 . Tính góc giữa đường thẳng SB và mặt phẳng (ABC).
A. 45 0
B. 60 0
C. 30 0
D. 90 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Vì SA=SB=SC suy ra tam giác SAB và tam giác SAC cân tại S. Vậy B′,C′ lần lượt là trung điểm của AB,AC.
Ta có:
Chọn C
Vì SA=SB=SC suy ra tam giác SAB và tam giác SAC cân tại S. Vậy B′,C′ lần lượt là trung điểm của AB,AC
Ta có
Đáp án D
Đặt SA = SB = SC = a ⇒ ∆ S A C đều cạnh a ⇒ A C = a , A B = a 2
Mặt khác B C 2 = S B 2 + S C 2 - 2 S B . S C . cos 120 ° = 2 a 2 - 2 a 2 . - 1 2 = 3 a 2 ⇒ B C = a 3 .
Khi đó ∆ A B C cận tại A, do SA = SB = SC ⇒ hình chiếu vuông góc của S lên mặt phẳng (ABC) là tâm đường tròn ngoại tiếp tam giác ABC và là trung điểm của cạnh huyền BC.
Đáp án B
Ta có: S I ⊥ A B C ⇒ ∆ S I A = ∆ S I B = ∆ S I C (cạnh huyền- cạnh góc vuông)
Suy ra IA = IB = IC hay I là tâm đường tròn ngoại tiếp tam giác ABC.
Đặt SA = SB = SC = x ⇒ B C = x 3 A C = x A B = x 2 ⇒ ∆ A B C vuông tại A do A B 2 + A C 2 = B C 2
Do đó I là trung điểm của BC.
Chọn C.
Phương pháp: Sử dụng công thức tính thể tích khối chóp khi biết ba góc ở một đỉnh và ba cạnh ở đỉnh đó.
(trong đó a, b, c là độ dài ba cạnh, x, y, z là số đo ba góc ở một đỉnh)
Sau đó tính khoảng cách dựa vào công thức tính thể tích h = 3 V h .
Cách giải: Áp dụng công thức trên ta có:
Đáp án C
Đặt SA=a.
=> tam giác ABC vuông tại B.
Gọi O là trung điểm của AC, khi đó OA=OB=OC => S, O cùng thuộc trục của đường tròn ngoại tiếp tam giác ABC, suy ra S O ⊥ ( A B C ) Do đó OB là hình chiếu vuông góc của SB lên mặt phẳng (ABC) nên góc giữa SB và (ABC) là: