K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

Đáp án B

a: Ta có: \(\dfrac{3}{x^2+x-2}-\dfrac{1}{x-1}=\dfrac{-7}{x+2}\)

\(\Leftrightarrow3-\left(x+2\right)=-7\left(x-1\right)\)

\(\Leftrightarrow3-x-2+7x-7=0\)

\(\Leftrightarrow6x-6=0\)

hay x=1(loại

b: Ta có: \(\dfrac{2}{-x^2+6x-8}-\dfrac{x-1}{x-2}=\dfrac{x+3}{x-4}\)

\(\Leftrightarrow\dfrac{-2}{\left(x-2\right)\left(x-4\right)}-\dfrac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}=\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}\)

Suy ra: \(-2-x^2+5x-4=x^2+x-6\)

\(\Leftrightarrow-x^2+5x-6-x^2-x+6=0\)

\(\Leftrightarrow-2x^2+4x=0\)

\(\Leftrightarrow-2x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(loại\right)\end{matrix}\right.\)

12 tháng 8 2021

\(\dfrac{3}{x^2+x-2}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)

\(\Rightarrow\dfrac{3}{\left(x^2-x\right)+\left(2x-2\right)}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)

\(\Rightarrow\dfrac{3}{x\left(x-1\right)+2\left(x-1\right)}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)

\(\Rightarrow\dfrac{3}{\left(x+2\right)\left(x-1\right)}-\dfrac{1}{x-1}+\dfrac{7}{x+2}=0\)

\(\Rightarrow\dfrac{3}{\left(x+2\right)\left(x-1\right)}-\dfrac{x+2}{\left(x+2\right)\left(x-1\right)}+\dfrac{7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=0\)

\(\Rightarrow\dfrac{3-\left(x+2\right)+7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=0\)

\(\Rightarrow3-x-2+7x-7=0\)

\(\Rightarrow6x-6=0\)

\(\Rightarrow x=1\)

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

QT
Quoc Tran Anh Le
Giáo viên
7 tháng 3 2021

Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!

7 tháng 3 2021

Quoc Tran Anh Le CTV Chưa ra bài tiếp à!?

11 tháng 3 2021

undefined

11 tháng 3 2021

undefined

Bài 1: 

c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)

Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)

\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)

Suy ra: \(-12x-3=8x-2-6x-8\)

\(\Leftrightarrow-12x-3-2x+10=0\)

\(\Leftrightarrow-14x+7=0\)

\(\Leftrightarrow-14x=-7\)

\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

17 tháng 4 2022

a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow\left(x^2+x+1\right)^2+\left(x^2+x+1\right)-12=0\)

\(\Leftrightarrow\left(x^2+x+1\right)^2-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-12=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+1-3\right)+ 4\left(x^2+x+1-3\right)=0\)

\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x+5\right)=0\)

\(\Leftrightarrow x^2+x+4=0\) hay \(x^2+x-2=0\)

\(\Leftrightarrow x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{15}{4}=0\) hay \(x^2-x+2x-2=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\) (pt vô nghiệm) hay\(x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow x=1\) hay \(x=-2\)

-Vậy \(S=\left\{1;-2\right\}\)

17 tháng 4 2022

b) \(x^3+5x^2-10x-8=0\)

\(\Leftrightarrow x^3-2x^2+7x^2-14x+4x-8=0\)

\(\Leftrightarrow x^2\left(x-2\right)+7x\left(x-2\right)+4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+7x+4\right)=0\)

\(\Leftrightarrow x=2\) hay \(x^2+2.\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{33}{4}=0\)

\(\Leftrightarrow x=2\) hay \(\left(x+\dfrac{7}{2}\right)^2-\dfrac{33}{4}=0\)

\(\Leftrightarrow x=2\) hay \(\left(x+\dfrac{7}{2}+\dfrac{\sqrt{33}}{2}\right)\left(x+\dfrac{7}{2}-\dfrac{\sqrt{33}}{2}\right)=0\)

\(\Leftrightarrow x=2\) hay \(x=\dfrac{-7-\sqrt{33}}{2}\) hay \(x=\dfrac{-7+\sqrt{33}}{2}\)

-Vậy \(S=\left\{2;\dfrac{-7-\sqrt{33}}{2};\dfrac{-7+\sqrt{33}}{2}\right\}\)

 

a) ĐKXĐ: \(x\ne1\)

Ta có: \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)

\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow21x-2x=-2+9\)

\(\Leftrightarrow19x=7\)

\(\Leftrightarrow x=\dfrac{7}{19}\)

Vậy: \(S=\left\{\dfrac{7}{19}\right\}\)

a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)

Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)

Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)

\(\Leftrightarrow2x^2+2-2x^2-2x=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow-2x=-2\)

hay x=1(nhận)

Vậy: S={1}

b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)

Ta có: \(\dfrac{5}{3x+2}=2x-1\)

\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)

\(\Leftrightarrow6x^2-3x+4x-2-5=0\)

\(\Leftrightarrow6x^2+x-7=0\)

\(\Leftrightarrow6x^2-6x+7x-7=0\)

\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)

d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)

Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)

\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)

\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)