Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng A B → . A C ⇀
A. 2a2
B. a2
C. - a2
D. a 2 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: góc A B → , A C → là góc A ^ nên A B → , A C → = 60 0 .
Do đó A B → . A C → = A B . A C . c o s A B → , A C → = a . a . c o s 60 0 = a 2 2 .
Chọn D.
a: \(\overrightarrow{BA}\cdot\overrightarrow{BC}=BA\cdot BC\cdot cos60=\dfrac{1}{2}a^2\)
b: \(\overrightarrow{HB}\cdot\overrightarrow{BA}=\overrightarrow{HB}\left(\overrightarrow{HA}-\overrightarrow{HB}\right)=\overrightarrow{HB}\cdot\overrightarrow{HA}-HB^2=-HB^2=-\dfrac{1}{4}a^2\)
a.
Theo BĐT tam giác: \(c< a+b\Rightarrow c^2< ac+bc\)
\(b< a+c\Rightarrow b^2< ab+bc\) ; \(a< b+c\Rightarrow a^2< ab+ac\)
Cộng vế với vế: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b.
Do a;b;c là 3 cạnh của tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\b+c-a>0\\c+a-b>0\end{matrix}\right.\)
\(\left(a+b-c\right)\left(b+c-a\right)\le\dfrac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)
Tương tự: \(\left(b+c-a\right)\left(a+c-b\right)\le c^2\) ; \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)
Nhân vế với vế:
\(\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\)
Lời giải:
$\overrightarrow{AB}\parallel \overrightarrow{C'D'}$ và $|\overrightarrow{AB}|=|\overrightarrow{C'D'}|=a$ nên:
$\overrightarrow{AB}.\overrightarrow{C'D'}=a^2$
Ta có: \(a\left(a^2-b^2\right)=c\left(b^2-c^2\right)\Leftrightarrow a^3+c^3=b^2c+b^2a\)
\(\Leftrightarrow\left(a+c\right)\left(a^2-ac+c^2\right)=b^2\left(c+a\right)\Leftrightarrow b^2=a^2-ac+c^2\).
Theo định lý hàm cos: \(b^2=a^2+c^2-2cos\widehat{B}.ac\).
Do đó \(cos\widehat{B}=\dfrac{1}{2}\) hay \(\widehat{B}=60^o\).
Chọn D.
Ta có góc là góc BAC nên
Do đó