K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Chọn D.

Ta có góc  là góc BAC nên 

Do đó

19 tháng 5 2017

Ta có: góc A B → , A C →  là góc A ^  nên  A B → , A C → = 60 0 .

Do đó  A B → . A C → = A B . A C . c o s A B → , A C → = a . a . c o s 60 0 = a 2 2 .

 Chọn D.

4 tháng 12 2018

Chọn A.

4 tháng 8 2017

Đáp án D

a: \(\overrightarrow{BA}\cdot\overrightarrow{BC}=BA\cdot BC\cdot cos60=\dfrac{1}{2}a^2\)

b: \(\overrightarrow{HB}\cdot\overrightarrow{BA}=\overrightarrow{HB}\left(\overrightarrow{HA}-\overrightarrow{HB}\right)=\overrightarrow{HB}\cdot\overrightarrow{HA}-HB^2=-HB^2=-\dfrac{1}{4}a^2\)

NV
23 tháng 1 2021

a.

Theo BĐT tam giác: \(c< a+b\Rightarrow c^2< ac+bc\)

\(b< a+c\Rightarrow b^2< ab+bc\) ; \(a< b+c\Rightarrow a^2< ab+ac\)

Cộng vế với vế: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

b.

Do a;b;c là 3 cạnh của tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\b+c-a>0\\c+a-b>0\end{matrix}\right.\)

\(\left(a+b-c\right)\left(b+c-a\right)\le\dfrac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)

Tương tự: \(\left(b+c-a\right)\left(a+c-b\right)\le c^2\) ; \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

Nhân vế với vế:

\(\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

$\overrightarrow{AB}\parallel \overrightarrow{C'D'}$ và $|\overrightarrow{AB}|=|\overrightarrow{C'D'}|=a$ nên:

$\overrightarrow{AB}.\overrightarrow{C'D'}=a^2$

15 tháng 1 2021

Ta có: \(a\left(a^2-b^2\right)=c\left(b^2-c^2\right)\Leftrightarrow a^3+c^3=b^2c+b^2a\)

\(\Leftrightarrow\left(a+c\right)\left(a^2-ac+c^2\right)=b^2\left(c+a\right)\Leftrightarrow b^2=a^2-ac+c^2\).

Theo định lý hàm cos: \(b^2=a^2+c^2-2cos\widehat{B}.ac\).

Do đó \(cos\widehat{B}=\dfrac{1}{2}\) hay \(\widehat{B}=60^o\).

7 tháng 2 2018