Phân tích đa thức thành nhân tử:
x3+2+3(x3-2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^3-\left(y-2\right)^3+\left(y-x-2\right)^2\)
\(=\left(x-y+2\right)\left(x^2+xy-2x+y^2-4y+4\right)+\left(x-y+2\right)^2\)
\(=\left(x-y+2\right)\left(x^2+xy-2x+y^2-4y+4+x-y+2\right)\)
\(=\left(x-y+2\right)\left(x^2+y^2+6+xy-x-5y\right)\)
Câu 1:
$x^2+4y^2+4xy-16=[x^2+(2y)^2+2.x.2y]-16$
$=(x+2y)^2-4^2=(x+2y-4)(x+2y+4)$
Câu 2:
$x^3+x^2+y^3+xy=(x^3+y^3)+(x^2+xy)$
$=(x+y)(x^2-xy+y^2)+x(x+y)=(x+y)(x^2-xy+y^2+x)$
Câu 1:
\(x^2+4y^2+4xy-16\)
\(=\left(x+2y\right)^2-16\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
Câu 2:
\(x^3+x^2+y^3+xy\)
\(=\left(x^3+y^3\right)\left(x^2+xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+x\right)\)
\(x^3-y^3+2x^2+2xy\)
\(=x\left(x^2-y^2+2x+2y\right)\)
\(=\)\(x\left[\left(x+y\right)\left(x-y\right)+2\left(x+y\right)\right]\)
\(=x\left(x+y\right)\left(x-y+2\right)\)
2(x+3)-x3-3x
\(=-x^3-3x+2x+6\)
\(=-x^3-x+6\)
Đa thức này ko phân tích được nha bạn
a) Ta có: \(x^2-3x+xy-3y\)
\(=x\left(x-3\right)+y\left(x-3\right)\)
\(=\left(x-3\right)\left(x+y\right)\)
b) Ta có: \(x^3+10x^2+25x-xy^2\)
\(=x\left(x^2+10x+25-y^2\right)\)
\(=x\left(x+5-y\right)\left(x+5+y\right)\)
c) Ta có: \(x^3+2+3\left(x^3-2\right)\)
\(=4x^3-4\)
\(=4\left(x-1\right)\left(x^2+x+1\right)\)
1a) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(a,=-\left(x-1\right)^3\left[=\left(1-x\right)^3\right]\\ b,=\left(1-x\right)^3\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)\)
\(=x^3+2+3x^3-6=4x^3-4=4\left(x^3-1\right)=4\left(x-1\right)\left(x^2+x+1\right)\)