Cho biểu thức : A= a^3 + 2a^2 - 1 : a^3 + 2a^2 + 2a + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2zx+2yz\)
b: \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)
c: \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy-2xz+2yz\)
\(giải:\)\(a,\)
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)\(=\frac{a^3+a^2+a^2-1}{a^3+2a^2+2a+1}\)
\(=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}\)
\(=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2-a+1+2a\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+a-1}{a^2+a+1}\)
\(b,\)gọi d là \(ƯCLN\left(a^2+a-1,a^2+a+1\right)\)
\(\Rightarrow a^2+a-1⋮d\) và \(a^2+a+1⋮d\)
\(\Rightarrow\left(a^2+a-1\right)-\left(a^2+a+1\right)⋮d\)
\(\Rightarrow-2⋮d\)hay\(2⋮d\)
mà \(a^2+a+1=\left(a^2+a\right)+1=a\left(a+1\right)+1\)
mà a(a+1) là tích của hai số nguyên liên tiếp nên chia hết cho 2 => a(a+1) là một số chẵn => a(a+1)+1 là một số lẻ
=> a(a+1)+1 không chia hết cho 2 hay \(a^2+a+1\)ko chia hết cho 2
\(\RightarrowƯCLN\left(a^2+a-1,a^2+a+1\right)=1\)
\(\Rightarrow\frac{a^2+a-1}{a^2+a+1}\)là một phân số tối giản hay A là phân số tối giải(đpcm)
a ) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b ) Gọi d là ƯC(a2 + a - 1; a2 + 1 + 1) Nên ta có :
a2 + a - 1 ⋮ d và a2 + a + 1 ⋮ d
=> (a2 + a + 1) - (a2 + a - 1) ⋮ d
=> 2 ⋮ d => d = { 1; 2 }
Xét a2 + a + 1 = a(a + 1) + 1 . Vì a(a + 1) là 2 số nguyên liên tiếp nên a(a + 1) ⋮ 2
=> a(a + 1) + 1 không chia hết cho 2
=> ƯC(a2 + a - 1; a2 + 1 + 1) = 1
=> \(\frac{a^2+a-1}{a^2+a+1}\) là phân số tối giản
Hay \(A\)là phân số tối giản (đpcm)
Có đầy câu hỏi tương tự đáy bạn lên các câu hỏi đó mà xem
a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b) \(A=\frac{a\left(a+1\right)-1}{a\left(a+1\right)+1}\)
Với \(a\)nguyên thì \(a\left(a+1\right)\)là tích hai số nguyên liên tiếp nên là số chẵn, do đó \(a\left(a+1\right)-1,a\left(a+1\right)+1\)là hai số lẻ liên tiếp. Do đó \(A\)là phân số tối giản.