K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

Ta có D=\(x^2-2.3x+9+\left(\frac{y}{2}\right)^2+2.\frac{1}{2}y.5+25+11\)

         D=\(\left(x-3\right)^2+\left(\frac{y}{2}+5\right)^2+11\)

ta có \(\left(x-3\right)^2\:\ge0\)với mọi x

      \(\left(\frac{y}{2}+5\right)^2\ge0\)với mọi y

nên \(D\ge11\)

vậy Min D=11 đạt được khi:

\(x-3=0\) =>x=3

\(\frac{y}{2}+5=0\) => y=-10

29 tháng 3 2021

có làm mới có ăn nha em

6 tháng 11 2021

\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(minA=4\Leftrightarrow x=2\)

\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)

\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)

\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)

\(minC=-8\Leftrightarrow x=-1\)

\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)

\(maxD=-4\Leftrightarrow x=1\)

\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)

\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)

\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)

\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)

\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)

\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

8 tháng 11 2021

hk có câu H na bạn?
bạn thiếu câu cuối kìa

DD
5 tháng 12 2021

\(9x^2+5y^2-6xy-6x-6y+20\)

\(=9x^2+y^2+1-6x+2y-6xy+4y^2-8y+4+15\)

\(=\left(3x-y-1\right)^2+4\left(y-1\right)^2+15\ge15\)

Dấu \(=\)khi \(\hept{\begin{cases}3x-y-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=1\end{cases}}\).

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

2 tháng 12 2019

Có P = x2 + 5y2 + 4xy + 6x + 16y + 32

         = [(x2 + 4xy + 4y2) + 6x + 12y + 9] + (y2 + 4y + 22) + 19

         = [(x + 2y)2 + 2(x + 2y).3 + 32 ] + (y + 2)2 + 19

         = (x + 2y + 3)2 + (y + 2)2 + 19

Thấy (x + 2y + 3)2 ≥ 0 với mọi x; y

         (y + 2)2 ≥ 0 với mọi y

=> (x + 2y + 3)2 + (y + 2)2 ≥ 0 với mọi x; y

=> (x + 2y + 3)2 + (y + 2)2 + 19 ≥ 19 với mọi x; y

=> P ≥ 19 với mọi x; y

Dấu "=" xảy ra khi x + 2y + 3 = 0 và y + 2 = 0

Bn tự giải tiếp nha, mk ko biết có nhầm chỗ nào ko nhưng cách lm như vậy đó