Giải phương trình nghiệm nguyên : xy+2y=x+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2y+xy-x=4\)
\(\Leftrightarrow xy\left(x+1\right)-x-1=3\)
\(\Leftrightarrow xy\left(x+1\right)-\left(x+1\right)=3\)
\(\Leftrightarrow\left(xy-1\right)\left(x+1\right)=3\)
TH1:
\(\Leftrightarrow\hept{\begin{cases}xy-1=3\\x+1=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy=4\\x=0\end{cases}}\)
-> hệ phương trình vô nghiệm
TH2:
\(\Leftrightarrow\hept{\begin{cases}xy-1=1\\x+1=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=2\\x=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
TH3:
\(\Leftrightarrow\hept{\begin{cases}xy-1=-3\\x+1=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-2y=-2\\x=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1\\x=-2\end{cases}}\)
TH4:
\(\Leftrightarrow\hept{\begin{cases}xy-1=-1\\x+1=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-4y=0\\x=-4\end{cases}}\)
hệ pt vô nghiệm
vậy pt có tập nghiệm (x;y)={(1;2);(1;-2)}
Đề sai đâu đó nhỉ, mình nghĩ là:
\(x^2y^2-xy=x^2+y^2\)
\(\Leftrightarrow x^2y^2=x^2+xy+y^2\)
\(\Leftrightarrow x^2y^2+xy=\left(x+y\right)^2\)
\(\Leftrightarrow xy\left(xy+1\right)=\left(x+y\right)^2\)
VP là số chính phương nên VT phải là số chính phương. Bạn hiểu ý mình rồi chứ :D
>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0
>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)
có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong
Ta có : x2 - xy = 7x - 2y - 15
<=> x2 -xy - 7x + 2y + 15 = 0
phân tích đến đoạn này thì chắc chắn ta phải tách để ra dc nhân tử chung có dạng ( x + n ), mà chỉ có 2 cái -xy và 2y là có y
<=> x2 - 2x - 5x + 10 - xy + 2y = -5
<=> x.(x-2 ) -5.( x -2 ) -y. ( x-2) = -5
<=> ( x-2 ) ( x - 5 - y ) = -5
vì - 5 = ( -5) .1 = 5.( -1 ) . Ta xét 2 trường hợp rồi từ đó tìm dc giả trị x,y tương ứng !
\(xy+2y=x+4\Leftrightarrow x\left(y-1\right)=4-2y\Leftrightarrow x=\frac{4-2y}{y-1}\left(y\ne1\right)\)
\(\Leftrightarrow x=\frac{2+2-2y}{y-1}=\frac{2-2\left(y-1\right)}{y-1}=\frac{2}{y-1}-2\)
Để x nguyên \(\Rightarrow\frac{2}{y-1}\) nguyên hay y-1 là ước của 2
\(\Rightarrow y-1=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow y=\left\{-1;0;2;3\right\}\Rightarrow x=\left\{-3;-4;0;-1\right\}\)