K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020

chờ tí nhé

15 tháng 10 2020

Đâu bạn

22 tháng 12 2019

\(DK:x\ge\frac{2020}{2019}\)

PT\(\Leftrightarrow\left(\sqrt{2020x-2019}-\sqrt{2019x-2020}\right)+2019\left(x+1\right)=0\)

\(\Leftrightarrow\frac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\right)=0\)

:)

2 tháng 1 2020

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóvhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó

NV
17 tháng 1

ĐKXĐ: \(-\dfrac{1}{3}\le x\le6\)

\(\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14x-5\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)=0\)

\(\Leftrightarrow x-5=0\) (do \(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1>0;\forall x\))

\(\Rightarrow x=5\)

ĐKXĐ: \(\left\{{}\begin{matrix}3x+1>=0\\6-x>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{3}\\x< =6\end{matrix}\right.\)

\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)

=>\(\sqrt{3x+1}-4+1-\sqrt{6-x}+3x^2-14x-5=0\)

=>\(\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+3x^2-15x+x-5=0\)

=>\(\dfrac{3\cdot\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(3x+1\right)=0\)

=>\(\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{6-x}+1}+3x+1\right)=0\)

=>x-5=0

=>x=5(nhận)

NV
9 tháng 10 2019

\(p=\frac{a-1+2}{a-1}=1+\frac{2}{a-1}\)

Để p là SNT thì trước hết p là số tự nhiên \(\Rightarrow\frac{2}{a-1}\in N\Rightarrow a-1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow a=\left\{-1;0;2;3\right\}\)

Thay a vào biểu thức ban đầu thì chỉ \(a=\left\{2;3\right\}\) thỏa mãn, mà \(\left\{2;3\right\}\) đều là số nguyên tố nên a là SNT

2/ ĐKXĐ:...

\(\Leftrightarrow x^6\left(\sqrt{x+8}-3\right)+2019\left(x-1\right)=0\)

\(\Leftrightarrow\frac{x^6\left(x-1\right)}{\sqrt{x+8}+3}+2019\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x^6}{\sqrt{x+8}+3}+2019\right)=0\)

\(\Rightarrow x=1\) (ngoạc phía sau luôn dương)

NV
9 tháng 10 2019

3/

\(x^2+\left(y-3\right)x+y^2-3y+3=0\)

Coi pt trên là pt bậc 2 ẩn x, tham số y, để pt có nghiệm x nguyên thì \(\Delta\) không âm và là số chính phương

\(\Delta=\left(y-3\right)^2-4\left(y^2-3y+3\right)\ge0\)

\(\Leftrightarrow-3y^2+6y-3\ge0\Leftrightarrow-3\left(y-1\right)^2\ge0\)

\(\Rightarrow y=1\Rightarrow x^2-2x+1=0\Rightarrow x=1\)

Vậy pt có cặp nghiệm nguyên duy nhất \(\left(x;y\right)=\left(1;1\right)\)

NV
19 tháng 4 2019

ĐKXĐ: \(x\ge-3\)

\(x^4\sqrt{x+3}-2x^4+2019x-2019=0\)

\(\Leftrightarrow x^4\left(\sqrt{x+3}-2\right)+2019\left(x-1\right)=0\)

\(\Leftrightarrow x^4\left(\frac{x-1}{\sqrt{x+3}+2}\right)+2019\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x^4}{\sqrt{x+3}+2}+2019\right)=0\)

\(\Leftrightarrow x-1=0\) (ngoặc phía sau luôn dương)

\(\Rightarrow x=1\)

23 tháng 12 2019

với \(x\ge\frac{2020}{2019}\)

\(\sqrt{2020x-2019}+2019\left(x+1\right)-\sqrt{2019x-20120}\)\(=0\)

\(\Leftrightarrow\sqrt{2020x-2019}-\sqrt{2019x-2020}=-2019\left(x+1\right)\)

\(\Leftrightarrow2020x-2019-\left(2019x-2020\right)=-2019\left(x+1\right)\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)\)

\(\Leftrightarrow\left(x+1\right)+2019\left(x+1\right)\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[1+2019\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)\right]=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)(không thỏa mãn)

vậy phương trình vô nghiệm

18 tháng 5 2021

b)đk:\(x\ge\dfrac{1}{2}\)

Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)

\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)

=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\) 

Dấu = xảy ra\(\Leftrightarrow x=1\)

Vậy....

c) đk: \(x\ge0\)

\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)

\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)

Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)

\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)

pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)

\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...

 

18 tháng 5 2021

a)ĐKXĐ: x≥-1/3; x≤6

<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)

(vì x≥-1/3 nên3x+1≥0 )

 

3 tháng 9 2019

\(DK:-\frac{1}{3}\le x\le6\)

\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)-\left(\sqrt{6-x}-1\text{ }\right)+\left(3x^2-15x\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\frac{3x+1-16}{\sqrt{3x+1}+4}-\frac{6-x-1}{\sqrt{6-x}+1}+3x\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{\sqrt{6-x}+1}+3x\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{3}{\sqrt{3x+1}+4}+\frac{1}{\sqrt{6-x}+1}+3x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\left(n\right)\\\frac{3}{\sqrt{3x+1}+4}+\frac{1}{\sqrt{6-x}+1}+3x+1=0\left(l\right)\end{cases}}\)

Vay nghiem cua PT la \(x=5\)

3 tháng 9 2019

Thx MaiLink