Chứng minh BĐT:\(2a^2+b^2+c^2\ge2a\left(b+c\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow a^2-2ab+b^2+a^2-2ac+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2\ge0\) (luôn đúng)
Vậy BĐT ban đầu được chứng minh
Dấu "=" xảy ra khi \(a=b=c\)
a ) \(2a^2+b^2+c^2\ge2a\left(b+c\right)\)
\(\Leftrightarrow a^2-2ab+b^2+a^2-2ac+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2\ge0\)
\(\LeftrightarrowĐPCM.\)
b ) \(a^2+2b^2+12\ge2b\left(3-a\right)\)
\(\Leftrightarrow a^2+2b^2+12\ge6b-2ab\)
\(\Leftrightarrow a^2+2ab+b^2+b^2-6b+9+3\ge0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b-3\right)^2+3\ge0\)
\(\LeftrightarrowĐPCM.\)
c ) \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\)
\(\Leftrightarrow a^2+2a+1+b^2+2b+1+c^2+2c+1\ge0\)
\(\Leftrightarrow\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2\ge0\)
\(\LeftrightarrowĐPCM.\)
a)theo cauchy ta có
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\a^2+c^2\ge2ac\end{matrix}\right.\)
\(\Leftrightarrow2a^2+b^2+c^2\ge2a\left(b+c\right)\Rightarrowđpcm\)
câu b) xem lại đề , tôi nghĩ phải > 0 mới đúng
c) theo cauchy ta có
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\a^2+c^2\ge2ac\\b^2+c^2\ge2bc\end{matrix}\right.\)
cộng lại, rút 2 đi suy ra đpcm
Áp dụng bất đẳng thức Cauchy-Schwarz và bất đẳng thức AM-GM, ta có:
\(a^2+3\left(b^2+c^2+d^2\right)\ge a^2+\left(b+c+d\right)^2\ge2a\left(b+c+d\right)\)
Đẳng thức xảy ra khi $b=c=d=\frac{a}{3}.$
Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3
a, Ta có : \(\left(a-b\right)^2\ge0< =>a^2-2ab+b^2\ge0< =>a^2+b^2\ge2ab\)
\(\left(a-c\right)^2\ge0< =>a^2-2ac+c^2\ge0< =>a^2+c^2\ge2ac\)
Cộng theo vế hai bất đẳng thức sau : \(a^2+b^2+a^2+c^2\ge2ac+2ab< =>2a^2+b^2+c^2\ge2a\left(b+c\right)\left(đpcm\right)\)
Dấu = xảy ra khi và chỉ khi \(a=b=c\)
Dấu => thứ hai từ dưới lên bạn bị nhầm rồi.
Thứ nhất, nên dùng dấu <=> thay vì dấu =>
Thứ hai, sau dấu => phải là $(a-b)^2+(b-c)^2+(c-a)^2\geq 0$ mới đúng nhé bạn
Lời giải
\(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\ge8\)
\(A=\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\)
\(A=\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right]\)
\(A=\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right]\)Thừa nhận cần c/m câu khác: \(\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\ne0\)
\(\Rightarrow A\ge\left[\left(0\right)+2\right].\left[\left(0\right)+2\right].\left[\left(0\right)+2\right]=8\)
\(\Rightarrow A\ge8\forall_{a,b,c\ne0}\)=> dpcm
Đẳng thức khi \(\left\{{}\begin{matrix}\left|a\right|=1\\\left|b\right|=1\\\left|c\right|=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\pm1\\b=\pm1\\c=\pm1\end{matrix}\right.\) Không tin bạn thử a=b=c=-1<0 vào thử xem
Có một chút vần đề nha ĐK phải là a,b,c > 0 nhé
bài này ta sẽ chứng minh lần lượt \(a^2+\dfrac{1}{a^2};b^2+\dfrac{1}{b^2};c^2+\dfrac{1}{c^2}\)lớn hơn hoặc bằng 2
Ta sẽ giả sử
\(a^2+\dfrac{1}{a^2}\ge2\)(2)
\(\Leftrightarrow a^2-2+\dfrac{1}{a^2}\ge0\Leftrightarrow a^2-2a\times\dfrac{1}{a}+\dfrac{1}{a^2}\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{a}\right)^2\ge0\)(luôn đúng) (1)
BĐT (2) đúng suy ra BĐT (1) đúng
Dấu '=' xảy ra khi và chỉ khi \(a=\dfrac{1}{a}\Leftrightarrow a^2=1\Leftrightarrow a=1\)(*)
CMTT ta có : \(b^2+\dfrac{1}{b^2}\ge2\) (=) b = 1 (**)
\(c^2+\dfrac{1}{c^2}\ge2\) (=) c = 1 (***)
Nhân vế theo vế của (*) , (**) , (***) ta được
\(\left(a^2+\dfrac{1}{a^2}\right).\left(b^2+\dfrac{1}{b^2}\right).\left(c^2+\dfrac{1}{c^2}\right)\ge2^3=8\)(đpcm)
Dấu "=" xảy ra khi và chỉ khi a = b = c = 1
Dễ thấy: \(a^2;b^2;c^2\ge0\forall a;b;c\) mà \(a;b;c\ne0\) nên chỉ có \(a,b,c>0\)
Áp dụng BĐT AM-GM ta có:
\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2\cdot\frac{1}{a^2}}=2\sqrt{1}=2\)
\(b^2+\frac{1}{b^2}\ge2\sqrt{b^2\cdot\frac{1}{b^2}}=2\sqrt{1}=2\)
\(c^2+\frac{1}{c^2}\ge2\sqrt{c^2\cdot\frac{1}{c^2}}=2\sqrt{1}=2\)
Nhân theo vế 3 BĐT trên ta có:
\(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\ge2\cdot2\cdot2=8\)
Đẳng thức xảy ra khi \(a=b=c\)
\(2a^2+b^2+c^2\ge2a\left(b+c\right)\)
\(a^2+a^2+b^2+c^2\ge2ab+2ac\)
\(a^2+2ab+b^2+a^2+2ac+c^2\ge0\)
\(\left(a+b\right)^2+\left(a+c\right)^2\ge0\forall a,b,c\)
\(\Rightarrowđpcm\)
a^2 + a^2 + b^2 + c^2 lớn hơn hoặc bằng 2a(b+c)
Áp dụng bất đt cauchy cho hai số không âm a^2 và b^2
a^2 + b^2 lớn hơn hoặc bằng 2 căn ( a^2 b^2 )
a^2 + b^2 lớn hơn hoặc bằng 2ab ( 1 )
Áp dụng bất đẳng thức cauchy cho hai số không âm a^2 và c^2
a^2 + c^2 lớn hơn hoặc bằng 2 căn ( a^2 c^2 )
a^2 + c^2 lớn hơn hoặc bằng 2ac ( 2 )
( 1 ) và ( 2 )
Suy ra a^2 + b^2 + a^2 + c^2 lớn hoăn hoặc bằng 2ab + 2ac
2a^2 + b^2 + c^2 lớn hơn hoặc bằng 2a(b+c) ( đpcm )