\(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Lời giải

\(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\ge8\)

\(A=\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\)

\(A=\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right]\)

\(A=\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right]\)Thừa nhận cần c/m câu khác: \(\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\ne0\)

\(\Rightarrow A\ge\left[\left(0\right)+2\right].\left[\left(0\right)+2\right].\left[\left(0\right)+2\right]=8\)

\(\Rightarrow A\ge8\forall_{a,b,c\ne0}\)=> dpcm

Đẳng thức khi \(\left\{{}\begin{matrix}\left|a\right|=1\\\left|b\right|=1\\\left|c\right|=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\pm1\\b=\pm1\\c=\pm1\end{matrix}\right.\) Không tin bạn thử a=b=c=-1<0 vào thử xem

6 tháng 4 2017

Có một chút vần đề nha ĐK phải là a,b,c > 0 nhé

bài này ta sẽ chứng minh lần lượt \(a^2+\dfrac{1}{a^2};b^2+\dfrac{1}{b^2};c^2+\dfrac{1}{c^2}\)lớn hơn hoặc bằng 2

Ta sẽ giả sử

\(a^2+\dfrac{1}{a^2}\ge2\)(2)

\(\Leftrightarrow a^2-2+\dfrac{1}{a^2}\ge0\Leftrightarrow a^2-2a\times\dfrac{1}{a}+\dfrac{1}{a^2}\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{a}\right)^2\ge0\)(luôn đúng) (1)

BĐT (2) đúng suy ra BĐT (1) đúng

Dấu '=' xảy ra khi và chỉ khi \(a=\dfrac{1}{a}\Leftrightarrow a^2=1\Leftrightarrow a=1\)(*)

CMTT ta có : \(b^2+\dfrac{1}{b^2}\ge2\) (=) b = 1 (**)

\(c^2+\dfrac{1}{c^2}\ge2\) (=) c = 1 (***)

Nhân vế theo vế của (*) , (**) , (***) ta được

\(\left(a^2+\dfrac{1}{a^2}\right).\left(b^2+\dfrac{1}{b^2}\right).\left(c^2+\dfrac{1}{c^2}\right)\ge2^3=8\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 1

6 tháng 4 2017

Dễ thấy: \(a^2;b^2;c^2\ge0\forall a;b;c\) mà \(a;b;c\ne0\) nên chỉ có \(a,b,c>0\)

Áp dụng BĐT AM-GM ta có: 

\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2\cdot\frac{1}{a^2}}=2\sqrt{1}=2\)

\(b^2+\frac{1}{b^2}\ge2\sqrt{b^2\cdot\frac{1}{b^2}}=2\sqrt{1}=2\)

\(c^2+\frac{1}{c^2}\ge2\sqrt{c^2\cdot\frac{1}{c^2}}=2\sqrt{1}=2\)

Nhân theo vế 3 BĐT trên ta có: 

\(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\ge2\cdot2\cdot2=8\)

Đẳng thức xảy ra khi \(a=b=c\)

6 tháng 4 2017

Áp dụng bđt Cauchy Schwarz dạng Engel ta có:

\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge\left(a+b+c\right).\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}\)

\(\ge\dfrac{9}{2}\left(đpcm\right)\)

6 tháng 4 2017

có cách giải tự luận khác ko bn?

13 tháng 6 2019

2. 

Từ giả thiết, ta có : 

\(\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}+1-\frac{1}{1+d}\)

\(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{b.c.d}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)

Tương tự, ta cũng có : 

\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{c.d.a}{\left(1+c\right)\left(1+d\right)\left(1+a\right)}}\)

\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Nhân vế theo vế 4 BĐT vừa chững minh rồi rút gọn ta được :

\(abcd\le\frac{1}{81}\left(đpcm\right)\)

13 tháng 6 2019

2) Từ \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3.\)

\(\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)

                  \(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}.\)(BĐT AM-GM)

Tương tự :

\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)

\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}.\)

Từ đó suy ra:

\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}.\frac{1}{1+d}\ge3.3.3.3\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)\right]^3}}\)

\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge\frac{81abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}.\)

\(\Leftrightarrow81abcd\le1\Leftrightarrow abcd\le\frac{1}{81}\)

Dấu '=' xảy ra khi \(a=b=c=d=\frac{1}{3}.\)

3)Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^8=\left[\left(\sqrt{a}+\sqrt{b}\right)^2\right]^4=\left(a+b+2\sqrt{ab}\right)^4.\)(1)

Với \(a,b\ge0\),áp dụng BĐT AM-GM cho (a+b) và (\(2\sqrt{ab}\)) ta được 

\(\left(a+b\right)+2\sqrt{ab}\ge2\sqrt{\left(a+b\right)2\sqrt{ab}}\)(2)

Từ (1) và (2) suy ra:

\(\left(\sqrt{a}+\sqrt{b}\right)^8\ge\left(2\sqrt{\left(a+b\right)2\sqrt{ab}}\right)^4\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2.\)

Dấu '=' xảy ra khi \(a+b=2\sqrt{ab}\Leftrightarrow a=b\)

1) Với \(x\le\frac{2}{3}\Rightarrow2-3x\ge0\)

Khi đó ,áp dụng bất đẳng thức AM-GM cho 2 số ta được:

\(\left(2-3x\right)+\frac{9}{2-3x}\ge2\sqrt{\left(2-3x\right)\frac{9}{2-3x}}=2.3=6\)

\(\Leftrightarrow2+\left(2-3x\right)+\frac{9}{2-3x}\ge2+6\)

\(\Leftrightarrow4-3x+\frac{9}{2-3x}\ge8\)

Dấu '=' xảy ra khi \(2-3x=\frac{9}{2-3x}\Leftrightarrow\left(2-3x\right)^2=9\Leftrightarrow2-3x=3\Leftrightarrow x=-\frac{1}{3}\)( vì 2-3x>0)

14 tháng 5 2017

\(A=\dfrac{\left(a-b\right)^2}{ab}+\dfrac{\left(b-c\right)^2}{bc}+\dfrac{\left(c-a\right)^2}{ca}\)

\(B=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

..................................

\(A=\dfrac{a^2+b^2-2ab}{ab}+\dfrac{b^2-2ab+c^2}{bc}+c^2+a^2-\dfrac{2ca}{ca}\)

\(A=\left(\dfrac{a}{b}+\dfrac{b}{a}-2\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}-2\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}-2\right)=\dfrac{\left(b+c\right)}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}-6\)

\(A=\left[\dfrac{\left(b+c\right)}{a}+1\right]+\left[\dfrac{\left(a+c\right)}{b}+1\right]+\left[\dfrac{\left(a+b\right)}{c}+1\right]-9\)

\(A=\dfrac{\left(a+b+c\right)}{a}+\dfrac{\left(a+b+c\right)}{b}+\left[\dfrac{\left(a+b+c\right)}{c}\right]-9\)

\(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-9\)

Ket luan

\(A\ne B\) => đề sai--> hoặc mình công trừ sai

16 tháng 5 2017

bạn đúng bạn đúng là mình chép sai à cảm ơn nhiều

15 tháng 11 2017

\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)

\(=\dfrac{a^2+\left(a-c\right)^2+c^2+2\left(ab-ac-bc\right)}{b^2+\left(b-c\right)^2+c^2+2\left(ab-ac-bc\right)}\)

\(=\dfrac{a^2+a^2-2ac+c^2+c^2+2ab-2ac-2bc}{b^2+b^2-2bc+c^2+c^2+2ab-2ac-2bc}\)

\(=\dfrac{2a^2+2c^2-4ac+2ab-2bc}{2b^2+2c^2-4bc+2ab-2ac}\)

\(=\dfrac{\left(a-c\right)^2+b\left(a-c\right)}{\left(b-c\right)^2+a\left(b-c\right)}\)

\(=\dfrac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(a-c+b\right)}=\dfrac{a-c}{b-c}\left(đpcm\right)\)

NV
2 tháng 1 2019

\(\Leftrightarrow a^2\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+b^2\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)+c^2\left(\dfrac{1}{c+a}-\dfrac{1}{a+b}\right)=0\)

\(\Leftrightarrow\dfrac{a^2\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^2\left(a-b\right)}{\left(a+c\right)\left(b+c\right)}+\dfrac{c^2\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}=0\)

\(\Leftrightarrow a^2\left(c-a\right)\left(c+a\right)+b^2\left(a-b\right)\left(a+b\right)+c^2\left(b-c\right)\left(b+c\right)=0\)

\(\Leftrightarrow a^2\left(c^2-a^2\right)+b^2\left(a^2-b^2\right)+c^2\left(b^2-c^2\right)=0\)

\(\Leftrightarrow a^2c^2+a^2b^2+b^2c^2-a^4-b^4-c^4=0\)

\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2b^2-2a^2c^2-2b^2c^2=0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(a^2-c^2\right)^2+\left(b^2-c^2\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}a^2-b^2=0\\a^2-c^2=0\\b^2-c^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=0\\\left(a-c\right)\left(a+c\right)=0\\\left(b-c\right)\left(b+c\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\) (do \(\left(a+b\right)\left(a+c\right)\left(b+c\right)\ne0\) \(\Rightarrow\left\{{}\begin{matrix}a+b\ne0\\a+c\ne0\\b+c\ne0\end{matrix}\right.\))

\(\Rightarrow a=b=c\)

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow \frac{ab+bc+ac}{abc}=0\Leftrightarrow ab+bc+ac=0\)

\(\Leftrightarrow 2(ab+bc+ac)=0\)

Cộng cả hai vế với \(a^2+b^2+c^2\) thì:

\(a^2+b^2+c^2+2(ab+bc+ac)=a^2+b^2+c^2\)

\(\Leftrightarrow (a+b+c)^2=a^2+b^2+c^2\)

Do đó ta có đpcm.