K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 3 2021

Dấu => thứ hai từ dưới lên bạn bị nhầm rồi.

Thứ nhất, nên dùng dấu <=> thay vì dấu => 

Thứ hai, sau dấu => phải là $(a-b)^2+(b-c)^2+(c-a)^2\geq 0$ mới đúng nhé bạn 

12 tháng 4 2018

a) Áp dụng Cauchy-Schwarz:

\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)

b) Áp dụng AM-GM:

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ac\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(a^2+b^2+c^2\ge ab+bc+ac\) (cm ở trên r nên khỏi cm lại đi)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2\)

Kết hợp 2 điều trên:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

12 tháng 4 2018

a)2(a2+b2) ≥ (a+b)2

⇔ 2a2+2b2 ≥ a2+2ab+b2

xét hiệu

⇔ 2a2+2b2-a2-2ab-b2 ≥ 0

⇔ a2-2ab+b2 ≥ 0

⇔ (a-b)2 ≥ 0 (luôn đúng )

=> đpcm

1 tháng 1 2018

Other way:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đúng)

Dấu "=" xảy ra khi a=b=c

16 tháng 5 2019

1 ) (a+b+c)^2 >= 3(ab+bc+ac)

<=> a^2 + b^2 + c^2 >= ab + bc + ac

<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ac

<=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + a^2 - 2ac + c^2 >= 0 

<=> (a - b)^2 + (b-c)^2 + (a-c)^2 >= 0 

( luôn đúng với mọi a ; b ; c )

( đpcm )

2 ) P =  \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}\)

AD BĐT Cô - si và BĐT phụ đã cmt ở trên  ta có : \(P\ge2.\frac{1}{3}+\frac{8.3.\left(ab+bc+ac\right)}{9\left(ab+bc+ac\right)}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Dấu " = " xảy ra <=> a = b = c 

16 tháng 5 2019

Khôi Bùi : theo e ý 2 có thể đơn giản hóa vấn đề bằng cách đặt ẩn phụ

đặt \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}=t\left(t\ge3\right)\)

\(\Rightarrow P=t+\frac{1}{t}=\frac{t}{9}+\frac{1}{t}+\frac{8}{9}t\)

Áp dụng BĐT AM-GM ta có:

\(P\ge2.\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}t\ge\frac{2.1}{3}+\frac{8}{9}.3=\frac{10}{3}\)

Dấu " = " xảy ra <=> a=b

* Chứng minh : 

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (*) 

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( luôn đúng ) 

Do đó : \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) \(\left(1\right)\)

* Chứng minh : 

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) đến đây chứng minh giống chỗ (*) 

... 

Do đó : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) \(\left(2\right)\)

Từ (1) và (2) suy ra : \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( đpcm ) 

27 tháng 3 2018

a)\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

b,c tương tự

d)Áp dụng bđt AM-GM ta được

\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4a^4b^4c^4}=4a^2bc\)

TT\(\Rightarrow a^4+b^4+b^4+c^4\ge4ab^2c\)

\(a^4+b^4+c^4+c^4\ge4abc^2\)

Cộng vế theo vế ta được \(4\left(a^4+b^4+c^4\right)\ge4\left(a^2bc+ab^2c+abc^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\left(đpcm\right)\)

27 tháng 3 2018

d)

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow a^4+b^4+c^4-a^2bc-ab^2c-abc^2\ge0\)

\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2bc-2ab^2c-2abc^2\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+2a^2b^2+\left(b^2-c^2\right)^2+2b^2c^2+\left(c^2-a^2\right)^2+2a^2c^2-2a^2bc-2b^2ac-2c^2ab\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(a^2b^2+b^2c^2-2b^2ac\right)+\left(b^2c^2+c^2a^2-2c^2abc\right)+\left(a^2b^2+c^2a^2-2a^2ab\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(ab-bc\right)^2+\left(bc-ac\right)^2+\left(ab-ac\right)^2\ge0\)

Luôn đúng với mọi a , b , c

29 tháng 11 2016

1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

=>ĐPcm

3)(a+b+c)2\(\ge\)3(ab+bc+ca)

=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca

=>a2+b2+c2-ab-bc-ca\(\ge\)0

=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0

=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0

=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0

4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

AH
Akai Haruma
Giáo viên
27 tháng 8

Lời giải:

Áp dụng BĐT AM-GM:

$a^3+\frac{1}{a}+\frac{1}{a}\geq 3\sqrt{a}$

$b^3+\frac{1}{b}+\frac{1}{b}\geq 3\sqrt{b}$

$c^3+\frac{1}{c}+\frac{1}{c}\geq 3\sqrt{c}$

Cộng theo vế các BĐT trên và thu gọn thì:
$a^3+b^3+c^3+2(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq 3(\sqrt{a}+\sqrt{b}+\sqrt{c})$

Giờ ta chỉ cần cm: $3(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq 3(ab+bc+ac)$ thì bài toán hoàn thành.

Thật vậy:

Áp dụng BĐT AM-GM:

$\sqrt{a}+\sqrt{a}+a^2\geq 3a$

$\sqrt{b}+\sqrt{b}+b^2\geq 3b$

$\sqrt{c}+\sqrt{c}+c^2\geq 3c$
Cộng 3 BĐT trên lại theo vế và thu gọn:

$a^2+b^2+c^2+2(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq 3(a+b+c)=(a+b+c)^2$

$\Rightarrow 2(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq 2(ab+bc+ac)$
$\Rightarrow \sqrt{a}+\sqrt{b}+\sqrt{c}\geq ab+bc+ac$

$\Rightarrow 3(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq 3(ab+bc+ac)$

(đpcm)

Bài toán hoàn thành.

Dấu "=" xảy ra khi $a=b=c=1$

16 tháng 12 2016

( a+ b+c) ^2 >= 3(ab+ bc+ ca)

=> a^2 + b^2 + c^2 + 2ab+ 2bc + 2ac >= 3ab + 3bc + 3ac

=> a^2 + b^2 + c^2 + 2ab + 2bc+ 2ac - 3ab - 3bc - 3ac >=0

=> a^2 + b^2 + c^2 - ab- bc - ac >=0

=> 2( a^2 + b^2 + c^2 - ab-bc-ac) >=0

=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac >=0

=> a^2 - 2ab + b^2 + b^2 -2bc + c^2 + c^2 - 2ac + a^2 >=0

=> (a-b)^2 +(b-c)^2 +(c-a)^2 >=0

vì (a-b)^2 >=0

(b-c)^2 >=0

(c-a)^2 >=0

nên (a-b)^2 +(b-c)^2 +(c-a)^2 >=0

hay (a+b+c)^2 >= 3(ab+bc+ca)

31 tháng 5 2017

= 3 nha