chứng minh rằng tổng của bốn số chính phương lẻ có thể là một số chính phương
giúp mk vs mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương
Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:
\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)
\(=n^4+2n^3+3n^2+2n+1\)
Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)
\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)
\(=\left(n+\dfrac{1}{n}+1\right)^2\)
\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)
Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.
Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)
Theo đề ta có :
\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)
\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)^2\)
\(=\left[n\left(n+1\right)+1\right]^2\)
mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)
\(\Rightarrow n\left(n+1\right)+1\) là số lẻ
\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ
\(\Rightarrow dpcm\)
Gọi 4 số đó là a , (a+1) , (a + 2) , (a + 3)
Do là 4 số tự nhiên liên tiếp nên buộc chúng phải là số chẵn
Đặt \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=t^2\)
Ta có
\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=4a^2+12a+14=4\left(a^2+3a+3\right)+2\)
Nhận thấy \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2\equiv2\left(mod4\right)\)
Mặt khác , \(t^2\equiv0\left(mod4\right)\)
=> Vô lý
Vậy tổng bình phương 4 số tự nhiên liên tiếp không là số chính phương
Gọi 2 số lẻ liên tiếp là 2k−1 và 2k+1, với k là số tự nhiên.
Tổng các bình phương của hai số lẻ liên tiếp là: (2k−1)2+(2k+1)2=4k2−4k+1+4k2−4k+1=8k2+2
Tổng trên chia cho 4 dư 2; Vậy nó không thể là số chính phương (Số chính phương hoặc chia hết cho 4 hoặc chia cho 4 dư 1)
Nhớ rằng: Số chính phương=Bình phương của 1 số ---> Chỉ có thể chia 4 dư 0 hoặc dư 1
Chứng minh: Xét bình phương số lẻ: \(\left(2n+1\right)^2=4\left(n^2+n\right)+1\)---> Chia 4 dư 1
Xét bình phương số chẵn: \(\left(2n\right)^2=4n^2⋮4\)
Giờ ta xét tổng 4 số chính phương lẻ:
\(\left(2a+1\right)^2+\left(2b+1\right)^2+\left(2c+1\right)^2+\left(2d+1\right)^2\)
\(=4\left(a^2+b^2+c^2+d^2+a+b+c+d+1\right)⋮4\)---> Hoàn toàn có thể là số chính phương