tính
\(a,\sqrt{32+10\sqrt{7}}+\sqrt{32-10\sqrt{7}}\)
\(b,\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(c,\dfrac{3-\sqrt{x}}{9-x}\) với \(x\ge0,x\ne9\)
\(d,\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}\) với \(x\ge0,x\ne9\)
\(e,\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-1}\) với \(x\ge0,x\ne1\)
\(f,\dfrac{x\sqrt{x}+64}{\sqrt{x}+4}\) với \(x\ge0\)
\(g,\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\) với \(x\ge0,y\ge0,x\ne y\)
\(h,6-2x-\sqrt{9-6x+x^2}\) với \(x 3\)
\(i,\sqrt{x+2+2\sqrt{x+1}}\) với...
Đọc tiếp
tính
\(a,\sqrt{32+10\sqrt{7}}+\sqrt{32-10\sqrt{7}}\)
\(b,\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(c,\dfrac{3-\sqrt{x}}{9-x}\) với \(x\ge0,x\ne9\)
\(d,\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}\) với \(x\ge0,x\ne9\)
\(e,\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-1}\) với \(x\ge0,x\ne1\)
\(f,\dfrac{x\sqrt{x}+64}{\sqrt{x}+4}\) với \(x\ge0\)
\(g,\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\) với \(x\ge0,y\ge0,x\ne y\)
\(h,6-2x-\sqrt{9-6x+x^2}\) với \(x< 3\)
\(i,\sqrt{x+2+2\sqrt{x+1}}\) với \(x\ge1\)
a) x = 16 (tm) => A = \(\frac{\sqrt{16}-2}{\sqrt{16}+1}=\frac{4-2}{4+1}=\frac{2}{5}\)
b) B = \(\left(\frac{1}{\sqrt{x}+5}-\frac{x+2\sqrt{x}-5}{25-x}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)
B = \(\frac{\sqrt{x}-5+x+2\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)
B = \(\frac{x+3\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{x+5\sqrt{x}-2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
c) P = \(\frac{B}{A}=\frac{\sqrt{x}-2}{\sqrt{x}+2}:\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
=> \(P\left(\sqrt{x}+2\right)\ge x+6\sqrt{x}-13\)
<=> \(\frac{\sqrt{x}+1}{\sqrt{x}+2}.\left(\sqrt{x}+2\right)-x-6\sqrt{x}+13\ge0\)
<=> \(-x-6\sqrt{x}+13+\sqrt{x}+1\ge0\)
<=> \(-x-5\sqrt{x}+14\ge0\)
<=> \(x+5\sqrt{x}-14\le0\)
<=> \(x+7\sqrt{x}-2\sqrt{x}-14\le0\)
<=> \(\left(\sqrt{x}+7\right)\left(\sqrt{x}-2\right)\le0\)
Do \(\sqrt{x}+7>0\) với mọi x => \(\sqrt{x}-2\le0\)
<=> \(\sqrt{x}\le2\) <=> \(x\le4\)
Kết hợp với Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)25
và x thuộc Z => x = {0; 1; 2; 3}
d) M = \(3P\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\) <=>M = \(3\cdot\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\)
M = \(\frac{3\sqrt{x}+3}{x+\sqrt{x}+4}=\frac{x+\sqrt{x}+4-x+2\sqrt{x}-1}{\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{15}{4}}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}}\le1\)(Do \(\left(\sqrt{x}-1\right)^2\ge0\) và \(\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}>0\))
Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\) <=> \(x=1\)
Vậy MaxM = 1 khi x = 1