Tìm nghiệm của các phương trình sau:
a) \(2sin\left(50^o-3x\right)+1=0\)
b) \(sinx+\frac{\sqrt{3}}{2}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)+\sqrt{3}=0\)
=>\(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)=-\sqrt{3}\)
=>\(sin\left(x+\dfrac{\Omega}{5}\right)=-\dfrac{\sqrt{3}}{2}\)
=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{5}=-\dfrac{\Omega}{3}+k2\Omega\\x+\dfrac{\Omega}{5}=\dfrac{4}{3}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{8}{15}\Omega+k2\Omega\\x=\dfrac{4}{3}\Omega-\dfrac{\Omega}{5}+k2\Omega=\dfrac{17}{15}\Omega+k2\Omega\end{matrix}\right.\)
b: \(sin\left(2x-50^0\right)=\dfrac{\sqrt{3}}{2}\)
=>\(\left[{}\begin{matrix}2x-50^0=60^0+k\cdot360^0\\2x-50^0=300^0+k\cdot360^0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=110^0+k\cdot360^0\\2x=350^0+k\cdot360^0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=55^0+k\cdot180^0\\x=175^0+k\cdot180^0\end{matrix}\right.\)
c: \(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)-1=0\)
=>\(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)=1\)
=>\(tan\left(2x-\dfrac{\Omega}{3}\right)=\dfrac{1}{\sqrt{3}}\)
=>\(2x-\dfrac{\Omega}{3}=\dfrac{\Omega}{6}+k2\Omega\)
=>\(2x=\dfrac{1}{2}\Omega+k2\Omega\)
=>\(x=\dfrac{1}{4}\Omega+k\Omega\)
a/ \(\Leftrightarrow2sin\left(2x-x\right)-1=0\)
\(\Leftrightarrow2sinx-1=0\Rightarrow sinx=\frac{1}{2}=sin\left(\frac{\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
b/ \(\Leftrightarrow sin\left(2x+x\right)+sin3x=\sqrt{2}\)
\(\Leftrightarrow2sin3x=\sqrt{2}\)
\(\Leftrightarrow sin3x=\frac{\sqrt{2}}{2}=sin\left(\frac{\pi}{4}\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x=\frac{\pi}{4}+k2\pi\\3x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k2\pi}{3}\\x=\frac{\pi}{4}+\frac{k2\pi}{3}\end{matrix}\right.\)
a/ \(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx-2=0\left(vn\right)\end{matrix}\right.\) (vô nghiệm do \(sinx\le1\) ; \(\forall x\))
\(\Leftrightarrow x=k\pi\)
b/ \(\Leftrightarrow\left[{}\begin{matrix}2sinx-3=0\\2sinx-\sqrt{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{3}{2}\left(vn\right)\\sinx=\frac{\sqrt{2}}{2}=sin\frac{\pi}{4}\end{matrix}\right.\) (lý do vô nghiệm như câu a)
\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{\pi}{4}+k2\pi\\sinx=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
c/ ĐKXĐ: \(sinx\ne-\frac{1}{2}\)
\(\Leftrightarrow2sinx-1=6sinx+3\)
\(\Leftrightarrow4sinx=-4\Rightarrow sinx=-1\)
\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)
d/ \(\Leftrightarrow2=3-sinx\)
\(\Leftrightarrow sinx=1\Rightarrow x=\frac{\pi}{2}+k2\pi\)
(các câu \(k\in Z\) )
a: =>2sin(x+pi/3)=-1
=>sin(x+pi/3)=-1/2
=>x+pi/3=-pi/6+k2pi hoặc x+pi/3=7/6pi+k2pi
=>x=-1/2pi+k2pi hoặc x=2/3pi+k2pi
b: =>2sin(x-30 độ)=-1
=>sin(x-30 độ)=-1/2
=>x-30 độ=-30 độ+k*360 độ hoặc x-30 độ=180 độ+30 độ+k*360 độ
=>x=k*360 độ hoặc x=240 độ+k*360 độ
c: =>2sin(x-pi/6)=-căn 3
=>sin(x-pi/6)=-căn 3/2
=>x-pi/6=-pi/3+k2pi hoặc x-pi/6=4/3pi+k2pi
=>x=-1/6pi+k2pi hoặc x=3/2pi+k2pi
d: =>2sin(x+10 độ)=-căn 3
=>sin(x+10 độ)=-căn 3/2
=>x+10 độ=-60 độ+k*360 độ hoặc x+10 độ=240 độ+k*360 độ
=>x=-70 độ+k*360 độ hoặc x=230 độ+k*360 độ
e: \(\Leftrightarrow2\cdot sin\left(x-15^0\right)=-\sqrt{2}\)
=>\(sin\left(x-15^0\right)=-\dfrac{\sqrt{2}}{2}\)
=>x-15 độ=-45 độ+k*360 độ hoặc x-15 độ=225 độ+k*360 độ
=>x=-30 độ+k*360 độ hoặc x=240 độ+k*360 độ
f: \(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=-\dfrac{1}{\sqrt{2}}\)
=>x-pi/3=-pi/4+k2pi hoặc x-pi/3=5/4pi+k2pi
=>x=pi/12+k2pi hoặc x=19/12pi+k2pi
g) \(3+\sqrt[]{5}sin\left(x+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=-\dfrac{3}{\sqrt[]{5}}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=sin\left[arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)\right]\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\\x+\dfrac{\pi}{3}=\pi-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)
h) \(1+sin\left(x-30^o\right)=0\)
\(\Leftrightarrow sin\left(x-30^o\right)=-1\)
\(\Leftrightarrow sin\left(x-30^o\right)=sin\left(-90^o\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-30^o=-90^0+k360^o\\x-30^o=180^o+90^0+k360^o\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-60^0+k360^o\\x=300^0+k360^o\end{matrix}\right.\)
\(\Leftrightarrow x=-60^0+k360^o\)
Ko được đâu bạn, \(\frac{k360^0}{3}=k120^0\) đâu thể thành \(k90^0\) được
a/ \(\Leftrightarrow sin\left(50^0-3x\right)=-\frac{1}{2}=sin\left(-30^0\right)\)
\(\Rightarrow\left[{}\begin{matrix}50^0-3x=-30^0+k360^0\\50^0-3x=210^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{80^0}{3}+k120^0\\x=-\frac{160^0}{3}+k120^0\end{matrix}\right.\)
b/ \(\Leftrightarrow sinx=-\frac{\sqrt{3}}{2}=sin\left(-60^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-60^0+k360^0\\x=240^0+k360^0\end{matrix}\right.\)