Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2sin^2\frac{x}{2}+sin2x-1}{2sinx-1}+sinx=\frac{1-cosx+2sin2x.cosx-1}{2sinx-1}+sinx\)
\(=\frac{cosx\left(2sinx-1\right)}{2sinx-1}+sinx=cosx+sinx\)
\(=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)\)
\(=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
\(\pi< x< \frac{3\pi}{2}\Rightarrow sinx< 0;cosx< 0;tanx>0;cotx>0\)
\(tanx-3cotx=6\Leftrightarrow tanx-\frac{3}{tanx}=6\)
\(\Leftrightarrow tan^2x-6tanx-3=0\Rightarrow\left[{}\begin{matrix}tanx=3+2\sqrt{3}\\tanx=3-2\sqrt{3}< 0\left(l\right)\end{matrix}\right.\)
\(\frac{1}{cos^2x}=1+tan^2x\Rightarrow cos^2x=\frac{1}{1+tan^2x}\Rightarrow cosx=\frac{-1}{\sqrt{1+tan^2x}}\) (do \(cosx< 0\))
\(\Rightarrow cosx=\frac{-1}{\sqrt{22+12\sqrt{3}}}\Rightarrow sinx=-\sqrt{1-cos^2x}=-\sqrt{\frac{15+6\sqrt{3}}{26}}\)
\(cotx=\frac{1}{tanx}=\frac{1}{3+2\sqrt{3}}\)
Số xấu dữ dội, bạn tự thay vào kết quả :(
\(\frac{1-sin2x}{1+sin2x}=\frac{sin^2x+cos^2x-2sinx.cosx}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(sinx-cosx\right)^2}{\left(sinx+cosx\right)^2}\)
\(=\frac{\left[\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\right]^2}{\left[\sqrt{2}.sin\left(x+\frac{\pi}{4}\right)\right]^2}=tan^2\left(\frac{\pi}{4}-x\right)\)
Bạn coi lại đề, vế phải là tan chứ ko phải cot
\(\frac{sin2x-2sinx}{sin2x+2sinx}=\frac{2sinx.cosx-2sinx}{2sinx.cosx+2sinx}=\frac{2sinx\left(cosx-1\right)}{2sinx\left(cosx+1\right)}\)
\(=\frac{cosx-1}{cos+1}=\frac{1-2sin^2\frac{x}{2}-1}{2cos^2\frac{x}{2}-1+2}=\frac{-2sin^2\frac{x}{2}}{2cos^2\frac{x}{2}}=-tan^2\frac{x}{2}\)
a/ \(cosx>0\Rightarrow cosx=\sqrt{1-sin^2x}=\frac{4}{5}\)
\(\Rightarrow tanx=-\frac{3}{4}\Rightarrow A=\frac{129}{20}\)
b/ \(B=\frac{5sinx+3cosx}{3cosx-2sinx}=\frac{\frac{5sinx}{sinx}+\frac{3cosx}{sinx}}{\frac{3cosx}{sinx}-\frac{2sinx}{sinx}}=\frac{5+3cotx}{3cotx-2}=\frac{5+9}{9-2}\)
c/ \(C=\frac{sinx.cosx\left(cotx-2tanx\right)}{sinx.cosx\left(5cotx+tanx\right)}=\frac{cos^2x-2sin^2x}{5cos^2x+sin^2x}=\frac{cos^2x-2\left(1-cos^2x\right)}{5cos^2x+1-cos^2x}=\frac{3cos^2x-2}{4cos^2x+1}=...\)
d/ Không dịch được đề, ko biết mẫu số bên trái nó đến đâu cả
Ko được đâu bạn, \(\frac{k360^0}{3}=k120^0\) đâu thể thành \(k90^0\) được
a/ \(\Leftrightarrow sin\left(50^0-3x\right)=-\frac{1}{2}=sin\left(-30^0\right)\)
\(\Rightarrow\left[{}\begin{matrix}50^0-3x=-30^0+k360^0\\50^0-3x=210^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{80^0}{3}+k120^0\\x=-\frac{160^0}{3}+k120^0\end{matrix}\right.\)
b/ \(\Leftrightarrow sinx=-\frac{\sqrt{3}}{2}=sin\left(-60^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-60^0+k360^0\\x=240^0+k360^0\end{matrix}\right.\)
\(B=\frac{sinx+cosx}{2sinx+cosx}=\frac{\frac{sinx}{cosx}+\frac{cosx}{cosx}}{\frac{2sinx}{cosx}+\frac{cosx}{cosx}}=\frac{tanx+1}{2tanx+1}=\frac{3+1}{2.3+1}=...\)
\(C=\frac{\frac{4sin^3x}{cos^3x}+\frac{cos^3x}{cos^3x}}{\frac{sinx}{cos^3x}+\frac{3cosx}{cos^3x}}=\frac{4tan^3a+1}{tanx.\frac{1}{cos^2x}+3.\frac{1}{cos^2x}}=\frac{4tan^3x+1}{tanx\left(1+tan^2x\right)+3.\left(1+tan^2x\right)}\)
\(=\frac{4.3^3+1}{3\left(1+3^2\right)+3\left(1+3^2\right)}=...\)
\(\frac{sin^2x+cos^2x+2sinx.cosx}{sinx+cosx}-\left(1-tan^2\frac{x}{2}\right).cos^2\frac{x}{2}\)
\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\)
\(=sinx+cosx-cosx=sinx\)
\(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\left(\frac{1}{2}-\frac{1}{2}sin2x\right)^2\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)
\(=\frac{1}{4}-\frac{1}{2}\left(cos2x+sin2x\right)+\frac{1}{4}\left(cos^22x+sin^22x\right)\)
\(=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)
a/ \(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx-2=0\left(vn\right)\end{matrix}\right.\) (vô nghiệm do \(sinx\le1\) ; \(\forall x\))
\(\Leftrightarrow x=k\pi\)
b/ \(\Leftrightarrow\left[{}\begin{matrix}2sinx-3=0\\2sinx-\sqrt{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{3}{2}\left(vn\right)\\sinx=\frac{\sqrt{2}}{2}=sin\frac{\pi}{4}\end{matrix}\right.\) (lý do vô nghiệm như câu a)
\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{\pi}{4}+k2\pi\\sinx=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
c/ ĐKXĐ: \(sinx\ne-\frac{1}{2}\)
\(\Leftrightarrow2sinx-1=6sinx+3\)
\(\Leftrightarrow4sinx=-4\Rightarrow sinx=-1\)
\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)
d/ \(\Leftrightarrow2=3-sinx\)
\(\Leftrightarrow sinx=1\Rightarrow x=\frac{\pi}{2}+k2\pi\)
(các câu \(k\in Z\) )