X+X*5=3,6
Bài này làm sao ạ
dạng tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.
Khi \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)
Xét với \(m\ne\dfrac{5}{2}\):
\(\Delta'=\left(m-1\right)^2-3\left(2m-5\right)=m^2-8m+16=\left(m-4\right)^2\)
Pt đã cho luôn có 2 nghiệm \(\forall m\ne\dfrac{5}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1x_2=\dfrac{3}{2m-5}\end{matrix}\right.\)
Két hợp Viet với điều kiện đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1-x_2=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{8m-17}{2\left(2m-5\right)}\\x_2=\dfrac{-4m+13}{2\left(2m-5\right)}\end{matrix}\right.\)
Thế vào \(x_1x_2=\dfrac{3}{2m-5}\)
\(\Rightarrow\dfrac{\left(8m-17\right)\left(-4m+13\right)}{4\left(2m-5\right)^2}=\dfrac{3}{2m-5}\)
\(\Rightarrow32m^2-148m+161=0\)
\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{7}{4}\\m=\dfrac{23}{8}\end{matrix}\right.\)
1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)
\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)
2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)
\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)
4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)
\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(5^X+5^{X+1}=750\\ 5^X\cdot\left(1+5\right)=750\\ 5^X\cdot6=750\\ 5^X=125\\X=3 \)
\(\Leftrightarrow14-\frac{72}{-\left(8+x\right)}=-23\)
\(\Leftrightarrow37+\frac{72}{8+x}=0\)
\(\Leftrightarrow37\left(8+x\right)+72=0\)
\(\Leftrightarrow296+37x+72=0\)
\(\Leftrightarrow37x=-368\Leftrightarrow x=-\frac{368}{37}\)
Ta có (y+a)2 +(x-1)2=16
=>y2 +16+x2 +1=16
=>y2+x2 +17=16
=>y2+x2=16-17=-1
Tuy nhiên y2 lớn hơn hoặc bằng 1 và x2 lớn hơn hoặc bằng 1 nên x2 +y2 cũng lớn hơn hoặc bằng 1.
=> Không tồn tại giá trị x
12 - x + 2 - 3 = 10
12 - x + 2 = 10 + 3
12 - x + 2 = 7
12 - x = 7 - 2
12 - x = 5
x = 12 - 5
x = 7
Ta có : \(\frac{2x+5}{x+1}=\frac{2x+2+3}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=2+\frac{3}{x+1}\)
Vì 2 \(\inℤ\Rightarrow\frac{3}{x+1}\inℤ\Rightarrow3⋮x+1\Rightarrow x+1\inƯ\left(3\right)\Rightarrow x+1\in\left\{1;3;-1;-3\right\}\)
=> \(x\in\left\{0;2-2;-4\right\}\)
Để \(\frac{3x-1}{2x-1}\inℤ\Rightarrow3x-1⋮2x-1\Rightarrow2\left(3x-1\right)⋮2x-1\Rightarrow6x-2⋮2x-1\)
=> \(6x-3+1⋮2x-1\Rightarrow3\left(2x-1\right)+1⋮2x-1\)
Vì \(3\left(2x-1\right)⋮2x-1\)
=> \(1⋮2x-1\Rightarrow2x-1\inƯ\left(1\right)\Rightarrow2x-1\in\left\{1;-1\right\}\Rightarrow x\in\left\{1;0\right\}\)
\(\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=2+\frac{3}{x+1}\)
Để phân số nguyên => \(\frac{3}{x+1}\)nguyên
=> \(3⋮x+1\)
=> \(x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
=> \(x=\left\{0;-2;2;-4\right\}\)
\(\frac{3x-1}{2x-1}\)
Để phân số nguyên => \(3x-1⋮2x-1\)
=> \(2\left(3x-1\right)⋮2x-1\)
=> \(6x-2⋮2x-1\)
\(\Rightarrow3\left(2x-1\right)+1⋮2x-1\)
\(\Rightarrow1⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow x=\left\{1;0\right\}\)
x+x*5=3,6
=> x*(1+5)=3,6
=>x*6=3,6
=> x= 3,6 : 6
=> x=0,6