Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Để phân số \(\dfrac{-4}{2x-1}\) là số nguyên thì \(-4⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(-4\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;3;-1;5;-3\right\}\)
\(\Leftrightarrow x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};\dfrac{5}{2};-\dfrac{3}{2}\right\}\)
mà x là số nguyên
nên \(x\in\left\{1;0\right\}\)(thỏa ĐK)
Vậy: \(x\in\left\{1;0\right\}\)
a) \(-\dfrac{3}{x-1}\in\) \(\mathbb{Z}\) khi x - 1 là ước của 3. Mà ước của 3 là -1; -3; 1; 3
Ta có bảng:
x - 3 | -3 | -1 | 1 | 3 |
x | 0 | 2 | 4 | 6 |
d) \(\dfrac{3x+7}{x-1}=\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\)
Để giá trị của biểu thức là số nguyên thì x - 1 là ước của 10.
Làm tương tự như câu a.
Các ý còn lại giống phương pháp của câu a và d
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
Ta có : \(\frac{12x+1}{2x+3}=\frac{12x+18-17}{2x+3}=\frac{6\left(2x+3\right)-17}{2x+3}=6-\frac{17}{2x+3}\)
Vì \(6\inℤ\Rightarrow\frac{12x+1}{2x+3}\inℤ\Leftrightarrow\frac{17}{2x+3}\inℤ\Rightarrow17⋮2x+3\Rightarrow2x+3\inƯ\left(17\right)\)
=> \(2x+3\in\left\{1;17;-1;-17\right\}\Rightarrow x\in\left\{-1;7;-2;-10\right\}\)
De a, la so nguyen thi -3 phai chia het cho x-1
=>x-1 thuộc ước của -3={1,-1,3,-3
Ta có bảng giá trị:
x-1 1 -1 3 -3
x 2 0 4 -2
Vay x thuoc {2,0,4,-2} thi a, la so nguyen
b,Đề -4/2x-1 là số nguyên thì -4 phải chia hết cho 2x-1 =>2x-1 thuộc ước của -4={1,-1,2,-2,4,-4}
Ta có bảng giá trị:
2x-1 1 -1 2 -2 4 -4
x 1 0 / / / /
(/ là k có giá trị nào)
=>x thuộc {1,0} thì b, là số nguyên
c,Đề c, là số nguyên =>3x+7 chia het cho x-1
=>3x +7 -(x-1) chia het cho x-1
=>3x+7-3(x-1) chia het cho x-1
=>3x +7-3x +3 chia het cho x-1
=>10 chia het cho x-1
=>x-1 thuộc ước của 10={1,-1,2,-2,5,-5,10,-10)
Ta có bảng giá trị:
x-1 1 -1 2 -2 5 -5 10 -10
x 2 0 3 -1 6 -4 11 -9
Vậy x thuộc {2,0,3,-1,6,-4,11,-9} thì c, là số nguyên
d, bạn tự làm nha
Bn kiểm tra lại kq nhé
d)truong hop 1: voi x>0 <=> x-7=7-x<=>x+x=7+7<=>2x=14<=>x=7
truong hop 2: voi x<0 <=.> 7-x=7-x k co gtri
cac phan sau tuong tu nhe!
a, \(x-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b, \(2x-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
2x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 0 | loại | loại | loại | loại |
c, \(\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\Rightarrow x-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
d, \(\dfrac{4\left(x-3\right)+3}{-\left(x-3\right)}=-4-\dfrac{3}{x+3}\Rightarrow x+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x+3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
Ta có : \(\frac{2x+5}{x+1}=\frac{2x+2+3}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=2+\frac{3}{x+1}\)
Vì 2 \(\inℤ\Rightarrow\frac{3}{x+1}\inℤ\Rightarrow3⋮x+1\Rightarrow x+1\inƯ\left(3\right)\Rightarrow x+1\in\left\{1;3;-1;-3\right\}\)
=> \(x\in\left\{0;2-2;-4\right\}\)
Để \(\frac{3x-1}{2x-1}\inℤ\Rightarrow3x-1⋮2x-1\Rightarrow2\left(3x-1\right)⋮2x-1\Rightarrow6x-2⋮2x-1\)
=> \(6x-3+1⋮2x-1\Rightarrow3\left(2x-1\right)+1⋮2x-1\)
Vì \(3\left(2x-1\right)⋮2x-1\)
=> \(1⋮2x-1\Rightarrow2x-1\inƯ\left(1\right)\Rightarrow2x-1\in\left\{1;-1\right\}\Rightarrow x\in\left\{1;0\right\}\)
\(\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=2+\frac{3}{x+1}\)
Để phân số nguyên => \(\frac{3}{x+1}\)nguyên
=> \(3⋮x+1\)
=> \(x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
=> \(x=\left\{0;-2;2;-4\right\}\)
\(\frac{3x-1}{2x-1}\)
Để phân số nguyên => \(3x-1⋮2x-1\)
=> \(2\left(3x-1\right)⋮2x-1\)
=> \(6x-2⋮2x-1\)
\(\Rightarrow3\left(2x-1\right)+1⋮2x-1\)
\(\Rightarrow1⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow x=\left\{1;0\right\}\)