Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+để 3k là số nguyên tố thì k = 1
+để 7k là số nguyên tố thì k=1
a) x2 + 45 = y
Do x2 + 45 > 2 => y nguyên tố > 2 => y lẻ
=> x2 chẵn => x chẵn
Mà 2 là số nguyên tố chẵn duy nhất => x = 2
=> y = 22 + 45 = 49, ko là số nguyên tố, hình như là y2 mới đúng bn ạ
b) 2x = y + y + 1
=> 2x = 2y + 1
Do 2y + 1 là số lẻ => 2x lẻ => x = 0, không là số nguyên tố
Cả 2 câu sao đều vô lí z bn
1. Tìm n thuộc N để các biểu thức là số nguyên tố
a ) \(P=\left(n-3\right)\left(n+3\right)\)
\(\left(n-3\right)\left(n+3\right)=0\)
\(n^2-3^2=0\)
\(n^2-9=0\)
\(n^2=9\)
\(n=\sqrt{9}\)
\(n=3\)
Để \(x=\frac{5}{2a-1}\) là số nguyên thì \(5⋮2a-1\)
\(\Rightarrow2a-1\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow2a-1\in\left\{1;-1;5;-5\right\}\)
Ta lập bảng sau:
2a-1 | 1 | -1 | 5 | -5 |
a | 1 | 0 | 3 | -2 |
ĐK \(a\in Z\) | TM | TM | TM | TM |
Vậy \(a\in\left\{1;0;3;-2\right\}\).
x nguyên khi \(2a-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
- \(2a-1=-5\Rightarrow a=-2\)
- \(2a-1=-1\Rightarrow a=0\)
- \(2a-1=1\Rightarrow a=1\)
- \(2a-1=5\Rightarrow a=3\)
a) (x+1)+(x+2)+(x+3)+........+(x+100)=5750
(x+x+...+x)+(1+2+3+...+100)=5750
(x.100)+(1+100).100:2=5750
(x.100)+5050=5750
x.100=5750-5050
x.100=700
x =700:100
x = 7
Vậy x = 7
c) trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên)
+) Nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1)
+) Nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mãn điều kiện đề bài) (2)
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3)
Từ (1), (2), (3) suy ra p = 3 là giá trị cần tìm.
Vậy nha còn câu b mình tạm thời chưa biết, chúc bạn học tốt
ab+2a-b=3
a(b+2)-b=3
a(b+2)-b+2=3+2
(b+2)(a-1)=5
sau đó bạn tìm các nghiệm cho chúng thỏa mãn nhé(cho là hai số trên thuộc ước của 5 rồi tính)
Ta có : \(\frac{12x+1}{2x+3}=\frac{12x+18-17}{2x+3}=\frac{6\left(2x+3\right)-17}{2x+3}=6-\frac{17}{2x+3}\)
Vì \(6\inℤ\Rightarrow\frac{12x+1}{2x+3}\inℤ\Leftrightarrow\frac{17}{2x+3}\inℤ\Rightarrow17⋮2x+3\Rightarrow2x+3\inƯ\left(17\right)\)
=> \(2x+3\in\left\{1;17;-1;-17\right\}\Rightarrow x\in\left\{-1;7;-2;-10\right\}\)