Biết 2 số tự nhiên a và b thỏa mãn BCNN(a,b)=300;ƯCLN(a,b)=15 và a+15=b. Chứng minh rằng giá trị của \(\frac{a^2+b^2}{41}\) là một số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(BCNN\left(a,b\right)=300\) và \(ƯCLN\left(a,b\right)=15\)
\(\Leftrightarrow a.b=300.15=4500\)
Vì \(ƯCLN\left(a,b\right)=15\) nên \(a=15m\) và \(b=15n\) với \(ƯCLN=\left(m,n\right)=1\)
Vì \(a+15=b\Rightarrow15m+15=15n\Rightarrow15\left(m+1\right)=15n\)
\(\Leftrightarrow m+1=n\)
Mà \(a.b=4500\Rightarrow15m.15n=4500\Rightarrow15.15.m.n=4500\)
\(\Leftrightarrow m.n=20\)
\(\Leftrightarrow m=1\) và \(n=20\) hoặc \(m=4\) và \(n=5\)
Do ƯCLN(a; b) = 15
\(\Rightarrow a=15k\left(k\in Z\right);b=15m\left(m\in Z\right)\)
\(a+15=b\Rightarrow15k+15=15m\)
\(\Rightarrow k+1=m\)
*) k = 1 \(\Rightarrow m=2\)
\(\Rightarrow a=15;b=30\Rightarrow BCNN\left(a;b\right)=30\) (loại)
*) \(k=2\Rightarrow m=3\Rightarrow a=30;b=45\Rightarrow BCNN\left(a;b\right)=90\) (loại)
*) \(k=3\Rightarrow m=4\Rightarrow a=45;b=60\Rightarrow BCNN\left(a;b\right)=180\) (loại)
*) \(k=4\Rightarrow m=5\Rightarrow a=60;b=75\Rightarrow BCNN\left(a;b\right)=300\) (nhận)
Vậy a = 60; b = 75
Ta có: \(UCLN\left(a,b\right)=\frac{a\cdot b}{BCNN\left(a,b\right)}\)
\(->15=\frac{a.b}{300}\)
\(=>a.b=15\cdot300\)
thay b = 15+b.Ta được:
( 15 + a ) . a=4500
Ta thấy: 75 . 60 = 4500
Vậy: \(a=75;b=60\)