Cho các số a, b, c khác 0 thỏa mãn abc khác 1 và -1 và (ab+1)/b+(bc+1)/c+(ca+1)/a. cm a=b=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)
\(\Rightarrow a=b=c=\dfrac{1}{3}\)
\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(S=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(S=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(S=\frac{bc+b+1}{bc+b+1}=1\)
Ta có : \(a^2+ab=c^2+bc\Leftrightarrow a^2-c^2+b\left(a-c\right)=0\)
\(\Leftrightarrow\left(a-c\right)\left(a+b+c\right)=0\Leftrightarrow a-c=0\) ( do a;b;c \(\ne0\Rightarrow a+b+c\ne0\) )
\(\Leftrightarrow a=c\)
Làm tương tự ; ta có : a = b . Suy ra : a = b = c
\(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=6\)
Vậy ...
Ta có : a2+ab=c2+bc⇔a2−c2+b(a−c)=0a2+ab=c2+bc⇔a2−c2+b(a−c)=0
⇔(a−c)(a+b+c)=0⇔a−c=0⇔(a−c)(a+b+c)=0⇔a−c=0 ( do a;b;c ≠0⇒a+b+c≠0≠0⇒a+b+c≠0 )
⇔a=c⇔a=c
Làm tương tự ; ta có : a = b . Suy ra : a = b = c
A=(1+ab)(1+bc)(1+ca)=(1+1)(1+1)(1+1)=6A=(1+ab)(1+bc)(1+ca)=(1+1)(1+1)(1+1)=6
Vậy ...