Tìm n thuộc N* để p= (n2 -8)2 +36 thuộc tập hợp số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n-3}{n-2}=\frac{n-2-1}{n-2}=1-\frac{1}{n-2}\)
=>n-2 thuộc ƯỚC của 1 ={+1;-1}
*n-2=1=>n=3
*n-2=-1=>n=1
Chúc bạn học giỏi ( ^ . ^ )
Ta có:
(n2−8)2+36
=n4−16n2+64+36
=n4+20n2+100−36n2
=(n2+10)2−(6n)2
=(n2+10+6n)(n2+10−6n)
Mà để (n2+10+6n)(n2+10−6n) là số nguyên tố thì n2+10+6n=1 hoặc n2+10−6n=1
Mặt khác ta có n2+10−6n<n2+10+6n n2+10−6n=1 (n thuộc N)
n2+9−6n=0 hay (n−3)2=0 n=3
Vậy với n=3 thì (n2−8)2+36 là số nguyên tố
_________________
A=2/n-1 thuộc Z => n-1 thuộc{-2;-1;1;2}
=>n thuộc {-1;0;2;3}
B=n+4/n+1=1+3/n+1 thuộc Z
=>3/n+1 thuộc Z
=>n+1 thuộc {-3;-1;1;3}
=>n thuộc {-4;-2;0;2}
=>n=0;2
b,D=n+5/18 là số tự nhiên
=>n+5 chia hết cho 18
=>n+5 chia hết cho 3
=>n+6 không chia hết cho 3
=>n+6 không chia hết cho 15
=>n+6/15 không phải số tự nhiên(trái giả thuyết)
vậy a=rỗng
Để A thuộc Z => 2/ n-1 thộc Z => n - 1 thuộc ước của 2 ( + - 1 ; +-2)
(+) n - 1 = 1 =>n = 2
(+) n - 1 = -1 => n = 0
(+) n - 1 = 2 => n = 3
(+) n - 1 = -2 => n = -1
B = n+4/n+1 = n+1+3/n+1 = 1 + 3/n+1
ĐỂ B thuộc Z => n + 1 thuộc ước của 3 ( +-1 ; +-3)
(+) n + 1 = 1 => n = 0
(+) n + 1 = -1 => n = -2
(+) n + 1 = -3 => n = -4
(+) n + 1 = 3 => n = 2
Vậy n = 0 hoặc n = 2 thì A,B đồng thời thuộc tập hợp số nguyên.
b,tương tự nha
Gọi d là UCLN(2n+3,3n+5)
\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
=>d = 1
=>UCLN(2n+3,3n+5) = 1
=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Gọi d là UCLN(5n+6,8n+7)
\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)
\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1;13\right\}\)
Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)
=> UCLN(5n+6,8n+7) = 1
B1) Gọi d là UCLN của (2n+3) và (3n+5)
Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d
=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1
Vậy chúng là 2 số nguyên tố cùng nhau.
B2) Cách giải tương tự.
1,
Đặt A = n3 - n2 + n - 1
Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)
Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :
TH1 : n - 1 = 1 và n2 + 1 nguyên tố
⇒
n = 2 và n2 + 1 = 5 nguyên tố (thỏa)
TH2 : n2 + 1 = 1 và n - 1 nguyên tố
⇒
n = 0 và n - 1 = - 1( ko thỏa)
Vậy n = 2
2 ,
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.