Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại một số chỗ :
Ta có:
(n2−8)2+36=(n2−6n+10)(n2+6n+10)
Để (n2−8)2+36 là số nguyên tố thì n2−6n+10=1 hoặc n2+6n+10=1
TH1: n2−6n+10=1
⇔ n=3
Thử lại thấy đúng.
TH2: n2+6n+10=1
⇔ n=−3 (loại vì n∈N)
Vậy với n=3 thì (n2−8)2+36 là số nguyên tố.
Tại sao (n^2-8)^2 +36 lại bằng ( n^2 -6n+1-)(n^2+6n+10) Vậy các bạn???
Giải thích giùm mình nha
Tks
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+100\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\) là số nguyên tố thì \(n^2-6n+10=1\left(h\right)n^2+6n+10=1\)
Do \(n\in N\Rightarrow n^2+6n+10>n^2-6n+10\)
\(\Rightarrow n^2-6n+10=1\)
\(\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)
Ta có :
\(P=\)\(\left(n^2-3\right)^2+16\)
\(=n^4-6n^2+9+16\)
\(=n^4-16n^2+10n^2+25\)
\(=\left(n^4+10n^2+25\right)-16n^2\)
\(=\left(n^2+5\right)^2-\left(4n\right)^2\)
\(=\left(n^2+5-4n\right)\left(n^2+5+4n\right)\)
Để P là số nguyên tố cần \(\orbr{\begin{cases}n^2+5-4n=1\\n^2+5+4n=1\end{cases}}\)
Mà nhận thấy \(\left(n^2+5-4n\right)< \left(n^2+5+4n\right)\)nên \(\Rightarrow n^2+5+4n=1\left(n\in N\right)\Leftrightarrow n^2+4n+5-4=0\)
\(\Leftrightarrow n^2+4n+4=0\Leftrightarrow\left(n+2\right)^2=0\)
\(\Leftrightarrow n-2=0\Leftrightarrow n=2\)
Vậy.................
Ghi sai số dòng thứ 4 từ dưới lên nha - là \(n^2+4n+5-1\) nha , k phải \(n^2+4n+5-4\)nha
thông cảm đánh sai số
Đặt: \(A=\left(n^2+10\right)^2-36n^2\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Vì \(n\in N\Rightarrow n^2+6n+10\ge10\)
Điều kiện cần để A là số nguyên tố:
\(n^2-6n+10=1\)
\(\Rightarrow n^2-6n+9=0\)
\(\Rightarrow\left(n-3\right)^2=0\Rightarrow n=3\)
Ta phải thử lại:
\(A=\left(n^2+10\right)^2-36n^2=\left(3^2+10\right)^2-36.3^2=19^2-324=37\)
Vì 37 là số nguyên tố nên n = 3 thỏa mãn đề bài.