K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

Ta có :

Nếu n = 1 suy ra A = 0

Nếu n = 2 suy ra A = 5 là số nguyên tố

Nếu n>2 thì A là tích của hai thừa số mà mỗi thừa số đều lớn hơn hai . Vậy A là hợp số

Vậy để A = n3 – n2 + n – 1 là số nguyên tố thì n = 2.

1,

Đặt A = n3 - n2 + n - 1

Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)

Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :

TH1 : n - 1 = 1 và n2 + 1 nguyên tố 

n = 2 và n2 + 1 = 5 nguyên tố (thỏa)

TH2 : n2 + 1 = 1 và n - 1 nguyên tố 

n = 0 và n - 1 = - 1( ko thỏa)

Vậy n = 2

2 , 

Xột số   A = (2n – 1)2n(2n + 1)

A là tích của 3 số tự nhiên liờn tiệp nên A   ⋮   3  

Mặt khỏc 2n – 1 là số nguyên tố   ( theo giả thiết )

                2n  không chia hết cho 3

Vậy 2n + 1 phải chia hết cho 3 ⇒  2n + 1 là hợp số.

18 tháng 8 2017

n = 3.

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:

$n^2+12n=n(n+12)$ nên để $n^2+12n$ là số nguyên tố thì 1 trong 2 thừa số $n, n+12$ bằng $1$, số còn lại là số nguyên tố.

Mà $n< n+12$ nên $n=1$

Khi đó: $n^2+12n=1^2+12.1=13$ là số nguyên tố (thỏa mãn)

 

6 tháng 10 2017

ta có (n+3)(n+1) là số nguyên tố \(\Leftrightarrow\orbr{\begin{cases}n+3=1\\n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n=1-3\\n=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=-2\\n=0\end{cases}}}\)

                                                                                                                                Mà \(n\in N\)

\(\Rightarrow\)n=0

15 tháng 5 2016

a) đề thiếu

15 tháng 5 2016

Đặt n2 + 2006 = a2 (a thuộc Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (k$$N*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số

21 tháng 5 2016

a) Giả sử n2

(a+n) = 2006 (*) 

+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) 

+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia

hết cho 4 nên không thỏa mãn (*) 

Vậy không tồn tại n để n2

b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2

+ 2006 = 3m+2007= 3( m+669) chia hết cho 3.

Vậy n2

+ 2006 là hợp số.

+ 2006 là số chính phương khi đó ta đặt n2

+ 2006 là số chính phương. 

21 tháng 5 2016

Đã biết câu trả lời mà còn hỏi nữa con rảnh ruồi kia -__-

17 tháng 11 2015

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ