K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

Xét mẫu (x-2)2+(x-y)4+3

R đạt GTLN khi (x-2)2+(x-y)4+3 nhỏ nhất

Ta có \(\left(x-2\right)^2\ge0\)

\(\left(x-y\right)^4\ge0\)

=>(x-2)2+(x-y)4+3\(\ge3\)

Vậy mẫu số đạt GTNN là 3 khi x=y=2

Khi đó GTLN của R là 2013/3

6 tháng 4 2017

Vì \(\left(x-2\right)^2\ge0\forall x\in R\)

     \(\left(x-y\right)^4\ge0\forall x;y\in R\)

\(\Rightarrow\left(x-2\right)^2+\left(x-y\right)^2+3\ge3\forall x;y\in R\)

 Để biểu thức\(R_{max}\Leftrightarrow\)\(\left(x-2\right)^2+\left(x-y\right)^4+3=3\Rightarrow\left(x-2\right)^2=\left(x-y\right)^4=0\)

Ta có \(:\)\(\left(x-2\right)^2=0\Rightarrow x=0+2=2\)

Thay \(x=2\)vào \(\left(x-y\right)^4=0\)ta có \(:\)

\(\left(x-y\right)^4=\left(2-y\right)^4=0\Rightarrow y=2-0=2\)

\(\Rightarrow R_{max}=\frac{2013}{\left(2-2\right)^2+\left(2-2\right)^2+3}=\frac{2013}{3}\)

           Vậy GTLN của \(R=\frac{2013}{3}\)tại \(x=2;y=2\)

8 tháng 7 2020

Để \(T_{max}=\frac{-2\left|x-2018\right|-2021}{2020+\left|x-2018\right|}\)

Thì \(2020+\left|x-2018\right|_{min}\)

và \(-2\left|x-2018\right|-2021_{max}\)

Mà \(\left|x-2018\right|\ge0\forall x\Rightarrow-2\left|x-2018\right|\le0\) 

\(\Rightarrow T_{max}\Leftrightarrow\left|x-2018\right|_{min}\)

\(\Rightarrow T_{max}=-\frac{2021}{2020}\Leftrightarrow\left|x-2018\right|=0\Leftrightarrow x=0\)

\(\)

25 tháng 1 2021

RIM LM ĐÚNG NHƯNG SAI KQ NHÁ X = 2018

28 tháng 7 2018

* GTLN

  • Ta co: \(x^2+\left(x-2y\right)^2-2\left(x-2y\right)-4x+2018\)
  •   \(=x^2-4x+4+\left(x-2y\right)^2-2\left(x-2y\right).1+1+2013\)
  •    \(=\left(x-2\right)^2+\left(x-2y-1\right)^2+2013\)
  • Vì \(\left(x-2\right)^2\ge0,\forall x\)
  •       \(\left(x-2y-1\right)^2\ge0,\forall x\)
  • \(\Rightarrow\left(x-2\right)^2+\left(x-2y-1\right)^2\ge0\)

           \(\Rightarrow\left(x-2\right)^2+\left(x-2y-1\right)^2+2013\ge2013\)

           \(\Rightarrow\frac{2012}{\left(x-2\right)^2+\left(x-2y-1\right)^2+2013}\le\frac{2012}{2013}\)

           \(\Rightarrow G\le\frac{2012}{2013}\)

Vậy Max G= 2012/2013 tại \(\hept{\begin{cases}x-2=0\\x-2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\2-2y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)

AH
Akai Haruma
Giáo viên
30 tháng 12 2016

Lời giải:

Đặt \((x,y,z)=(2a,b,2c)\Rightarrow a,b,c\in\left [ 0;1 \right ]\)

Bằng cách dự đoán điểm rơi, ta sẽ đi chứng minh $P\leq 2$, tức là CM:

\(P=(1-a)(1-b)(2-c)+\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}\leq 2\). Thật vậy.

AM-GM cho bộ $1-a,1-b,a+b+1$ dương, ta có:

\(3=1-a+1-b+a+b+1\geq 3\sqrt[3]{(1-a)(1-b)(a+b+1)}\)

\(\Rightarrow (1-a)(1-b)(a+b+1)\leq 1\rightarrow (1-a)(1-b)(2-c)\leq \frac{2-c}{a+b+1}\)

Cần CM: \(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{2}{a+b+1}\leq 2\)\(\Leftrightarrow \frac{a}{b+c+1}+\frac{b}{a+c+1}\leq \frac{2a+2b}{a+b+1}\)

Hiển nhiên đúng vì \(b+c+1,a+c+1>\frac{a+b+1}{2}\forall a,b,c\in [0;1]\)

Vậy \(P_{max}=2\Leftrightarrow a=b=0;c\in [0;1]\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2016

Lúc đầu còn nghĩ nhầm đề tính mãi không ra @@

18 tháng 7 2017

Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :

\(y^2+2y+4^x-2^{x+1}+2=0\)

\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)

\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)

\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

Dấu = xảy ra khi :

\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)

CHÚC BẠN HỌC TỐT........... 

18 tháng 7 2017

mk chịu

11 tháng 8 2018

a, Ta có : y^2 lớn hơn hoặc bằng 0 với mọi y

=> -y^2 nhỏ hơn hoặc bằng 0 với mọi y 

=>-2-y^2 nhỏ hơn hoặc bằng -2 với mọi y

=> H nhỏ hơn hoặc -2 với mọi y

Dấu "=" xảy ra <=>y^2=0 <=>y=0

Vậy GTLN của H là -2 tại y=0