K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

Bạn tham khảo :

https://olm.vn/hoi-dap/detail/11923739775.html

Câu hỏi của Ngô Văn Phương - Toán lớp 5 - Học toán với OnlineMath

Hok tốt

# owe

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Lời giải:

$n=1$ thì $S=0$ nguyên nhé bạn. Phải là $n>1$

\(S=1-\frac{1}{1^2}+1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\)

\(=n-\underbrace{\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)}_{M}\)

Để cm $S$ không nguyên ta cần chứng minh $M$ không nguyên. Thật vậy

\(M> 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n(n+1)}=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)

\(M>1+\frac{1}{2}-\frac{1}{n+1}>1\) với mọi $n>1$

Mặt khác:

\(M< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{(n-1)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\)

\(M< 1+1-\frac{1}{n}< 2\)

Vậy $1< M< 2$ nên $M$ không nguyên. Kéo theo $S$ không nguyên.

29 tháng 12 2022

Cảm ơn thầy ạ

24 tháng 1 2016

Khó

9 tháng 9 2015

Quy đồng mẫu các phân số trong A

Chọn mẫu số chung là M = 24.3.5.7.9.11.13

=>  \(A=\frac{k_1+k_2+...k_{16}}{2^4.3.5.7...13}\) với k1; k2; ...; k16 là thừa số phị của các phân số 1/2; 1/3; ...; 1/16

Nhận xét: k1; ...; k15 chẵn . riêng k16 = 3.5.7...13 lẻ nên A có tử số lẻ và mẫu số chẵn => tử không chia hết cho mẫu => A không là số nguyên