2) Tìm n thuoc Z de n mu 2+13n-13n+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+13n-13=\left(n^2+3n\right)+\left(10n+30\right)-43\\ =n\left(n+3\right)+10\left(n+3\right)-43\\ =\left(n+3\right)\left(n+10\right)-43\)
\(Để:n^2+13n-13⋮\left(n+3\right)\\ =>43⋮\left(n+3\right)\\ =>n+3\inƯ\left(43\right)=\left\{\pm1;\pm43\right\}\\ =>n\in\left\{-4;-2;-46;40\right\}\left(TMDK\right)\)
n2+13-13 chia hết cho n+3
=> n2-32+32 chia het cho n+3
=> (n+3)(n-3)+9 chia het cho n+3
Vi (n+3)(n-3) chia het cho n+3 nen 9 chia het cho n+3
=> n+3 thuoc{+1;-1;+3;-3;+9;-9}
=> n thuoc {-2;-4;0;-6;6;-12}
\(M=2n^4+2n^3-9n^3-9n^2+7n^2+7n+6n+6=\left(n+1\right)\left(2n^3-9n^2+7n+6\right)=\left(n+1\right)\left(2n^3-4n^2-5n^2+10n-3n+6\right)\)
\(=\left(n+1\right)\left(n-2\right)\left(2n^2-5n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n^2+n-6n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n+1\right)\left(n-3\right)\)
\(=\left(n-1+2\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)+2\left(n-2\right)\left(n-3\right)\left(2n-2+3\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2\left(2n-2\right)\left(n-2\right)\left(n-3\right)+3.2\left(n-2\right)\left(n-3\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2.2\left(n-1\right)\left(n-2\right)\left(n-3\right)+6\left(n-2\right)\left(n-3\right)\)
ta có: (n-1)(n-2)(n-3) là tích của 3 số tự nhiên liên tiếp (với n>=3) => có 1 số chia hết cho 1, cho 2, cho 3
và vì (1;2;3)=1 => tích của chúng chia hết cho 1.2.3=6 => chia hết cho 6
tiếp theo với 4(n-1)(n-2)(n-3) cũng vậy
còn 6(n-2)(n-3) thì hiển nhiên chia hết cho 6 nhé
=> chia hết cho 6
\(n^2+13n=n^2+6n+7n+9-9=\left(n^2+6n+9\right)+\left(7n-9\right)\)
\(=\left(n^2+3n+3n+9\right)+\left(7n-9\right)=\left[n\left(n+3\right)+3\left(n+3\right)\right]+\left(7n-9\right)=\left(n+3\right)^2+\left(7n-9\right)\)
Mà (n+3)2 chia hết cho n+3
=>7n-9 chia hết cho n+3
=>7(n+3)-30 chia hết cho n+3
=>-30 chia hết cho n+3 (vì 7(n+3) chia hết cho n+3))
=>n+3 \(\in\) Ư(-30)={-30;-15;-10;-6;-5;-3;-2;-1;;1;2;3;5;6;10;15;30}
=>n \(\in\) {-33;-18;-13;-9;.......27}
Vậy..............
n2+13n chia hết cho n+3
=>n2+3n+10n+30-30 chia hết cho n+3
=>n.(n+3)+10.(n+3)-30 chia hết cho n+3
=>(n+10).(n+3)-30 chia hết cho n+3
Mà (n+10).(n+3) chia hết cho n+3
=>30 chia hết cho n+3
=>n+3\(\in\){-30;-15;-10;-6;-5;-3;-2;-1;1;2;3;5;6;10;15;30}
=>n\(\in\){-33;-18;-13;-9;-8;-6;-5;-4;-2;-1;0;2;3;7;12;27}
Ta có: n.(n + 13) - 13 chai hết n + 3
n.(n + 3) + 10n - 13 chia hết n + 3
=> 10.(n - 3) - 10 chia hết n + 3
=> 10.(n + 3 - 6) - 10 chia hết n + 3
=> 165