Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt n+18=a^2
n-14 =b^2 (vs a,b thuộc N)
=> 32=a^2-b^2
=> (a-b)(a+b)=32
=> a-b;a+b là ước dương của 32 do a+b>=0
=> Bạn tự xét nốt ước tìm đc a;b => tìm đc n.
Để \(n+18\)và \(n-14\) là 1 số chính phương thì:
\(\hept{\begin{cases}n+18=a^2\left(1\right)\\n-14=b^2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(n+18\right)-\left(n-14\right)=a^2-b^2\)(Lấy (1) - (2))
\(\Leftrightarrow n+18-n+14=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow32=\left(a-b\right)\left(a+b\right)\left(3\right)\)
Vì n là số tự nhiên nên: \(n+18>n-14>18\)
Vậy (3), ta được:
TH1: \(\hept{\begin{cases}a-b=1\\a+b=32\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=16\\b=15\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n+18=16^2\\n-14=15^2\end{cases}\Rightarrow\hept{\begin{cases}n=238\\n=239\end{cases}}}\)(loại)
TH2: \(\hept{\begin{cases}a-b=2\\a+b=16\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=9\\b=7\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n+18=9^2\\n-14=7^2\end{cases}\Rightarrow\hept{\begin{cases}n=63\\n=63\end{cases}\Rightarrow}n=63}\)(nhận)
TH3: \(\hept{\begin{cases}a-b=4\\a+b=8\end{cases}\Rightarrow\hept{\begin{cases}a=6\\b=2\end{cases}}\Rightarrow\hept{\begin{cases}n+18=6^2\\n-14=2^2\end{cases}}\Rightarrow\hept{\begin{cases}n=18\\n=18\end{cases}}\Rightarrow n=18}\)(nhận)
Vậy với n = 63 và n = 18 thì n+18 và n - 14 đều là số chính phương.
(Có thêm bước thử lại thì càng tốt nha Xu)
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
`P=n^3-n^2+n-1`
`=n^2(n-1)+(n-1)`
`=(n-1)(n^2+1)`
Vì n là stn thì p là snt khi
`n-1=1=>n=2`
Vậy n=2