K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Rightarrow y^3+5y^2-6y^2-30y+9y+45=0\)

\(\Rightarrow y^2\left(y+5\right)-6y\left(y+5\right)+9\left(y+5\right)=0\)

\(\Rightarrow\left(y^2-6y+9\right)\left(y+5\right)=0\)

\(\Rightarrow\left(y-3\right)^2\left(y+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\left(y-3\right)^2=0\Rightarrow y=3\\y+5=0\Rightarrow y=-5\end{cases}}\)

Vậy ........................

7 tháng 2 2020

Ta có : \(y^3-y^2-21y+45=0\)

\(\Leftrightarrow y^3+5y^2-6y^2-30y+9y+45=0\)

\(\Leftrightarrow y^2\left(y+5\right)-6y\left(y+5\right)+9\left(y+5\right)=0\)

\(\Leftrightarrow\left(y+5\right)\left(y^2-6y+9\right)=0\)

\(\Leftrightarrow\left(y+5\right)\left(y-3\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}y+5=0\\y-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=-5\\y=3\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-5;3\right\}\)

6 tháng 2 2020

y^3 - y^2 - 21y + 45 = 0

<=> y^3 - 3y^2 + 2y^2 - 6y - 15y + 45 = 0

<=> y^2(y - 3) + 2y(y - 3) - 15(y - 3) = 0

<=> (y^2 + 2y - 15)(y-3) = 0

<=> (y^2 + 5y - 3y - 15)(y - 3) = 0

<=> [y(y+5) - 3(y-5)](y-3) = 0

<=> (y-3)(y+5)(y-3) = 0

<=> y- 3 = 0 hoặc y + 5 = 0

<=> y = 3 hoặc y = -5

9 tháng 2 2018

a. y3 - y2 - 21y +45 = 0

⇔y3+5y2-6y2-30y+9y+45=0

⇔(y3+5y2)-(6y2+30y)+(9y+45)=0

⇔y2(y+5)-6y(y+5)+9(y+5)=0

⇔(y+5)(y2-6y+9)=0

⇔(y+5)(y-3)2=0

\(\left[{}\begin{matrix}y+5=0\\\left(y-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-5\\y-3=0\Leftrightarrow y=-3\end{matrix}\right.\)

vậy s={-5;-3}

22 tháng 3 2022

Tính giá trị của biểu thức:

a) Tại \(y=3\) ta có 

\(\left(3\right)^3-21.3+3\) = \(27-63+3\) = -33

b) Tại \(x=5\) và \(y=2\) ta có 

\(5.\left(2\right)^2-12.5.2+(5)^2\) = \(5.4-120+25\) = \(20-120+25=-75\)

 

NV
7 tháng 1 2022

Đề bài thiếu dữ liệu

AH
Akai Haruma
Giáo viên
30 tháng 6 2023

Lời giải:
Ta thấy:

$(-x^2y^3)^2\geq 0$ với mọi $x,y$

$(2y^2z^4=2(yz^2)^2\geq 0$ với mọi $y,z$

$\Rightarrow (2y^2z^4)^3\geq 0$ với mọi $y,z$
Do đó để tổng $(-x^2y^3)^2+(2y^2z^4)^3=0$ thì:

$-x^2y^3=2y^2z^4=0$

Hay $(x,y,z)=(x,0,z)$ với $x,z$ bất kỳ hoặc $(x,y,z)=(0,y,0)$ với $y$ là số bất kỳ.

4 tháng 3 2018

CMR: \(\frac{1}{x}+\frac{1}{y}\le2\)  biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0

8 tháng 3 2018

tôi quên mât CMR: 1/x+1/y<=-2

NV
31 tháng 12 2021

\(x+y+4=0\Rightarrow\left\{{}\begin{matrix}y=-4-x\\x+y=-4\end{matrix}\right.\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-4\right)^3-3xy.\left(-4\right)=12xy-64\)

\(\Rightarrow P=2\left(12xy-64\right)+3\left(x^2+y^2\right)+10x\)

\(=24xy+3x^2+3y^2+10x-128\)

\(=24x\left(-4-x\right)+3x^2+3\left(-4-x\right)^2+10x-128\)

\(=-18x^2-62x-80=-18\left(x+\dfrac{31}{18}\right)^2-\dfrac{479}{18}\le-\dfrac{479}{18}\)

\(P_{max}=-\dfrac{479}{18}\) khi \(\left(x;y\right)=\left(-\dfrac{31}{18};-\dfrac{41}{18}\right)\)

31 tháng 12 2021

ko có đơn vị P ạ

DD
23 tháng 6 2021

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+3\left(x+y\right)^2-6xy+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+y\right)^2+x+y+2\right)-3xy\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(x^2+y^2+2xy+x+y+2-3xy\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+2\right]=0\)

\(\Leftrightarrow x+y+2=0\)

\(\Leftrightarrow x+y=-2\)

\(M=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{-2}=-2\)

Dấu \(=\)khi \(x=y=-1\).