K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Rightarrow y^3+5y^2-6y^2-30y+9y+45=0\)

\(\Rightarrow y^2\left(y+5\right)-6y\left(y+5\right)+9\left(y+5\right)=0\)

\(\Rightarrow\left(y^2-6y+9\right)\left(y+5\right)=0\)

\(\Rightarrow\left(y-3\right)^2\left(y+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\left(y-3\right)^2=0\Rightarrow y=3\\y+5=0\Rightarrow y=-5\end{cases}}\)

Vậy ........................

7 tháng 2 2020

Ta có : \(y^3-y^2-21y+45=0\)

\(\Leftrightarrow y^3+5y^2-6y^2-30y+9y+45=0\)

\(\Leftrightarrow y^2\left(y+5\right)-6y\left(y+5\right)+9\left(y+5\right)=0\)

\(\Leftrightarrow\left(y+5\right)\left(y^2-6y+9\right)=0\)

\(\Leftrightarrow\left(y+5\right)\left(y-3\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}y+5=0\\y-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=-5\\y=3\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-5;3\right\}\)

6 tháng 2 2020

y^3 - y^2 - 21y + 45 = 0

<=> y^3 - 3y^2 + 2y^2 - 6y - 15y + 45 = 0

<=> y^2(y - 3) + 2y(y - 3) - 15(y - 3) = 0

<=> (y^2 + 2y - 15)(y-3) = 0

<=> (y^2 + 5y - 3y - 15)(y - 3) = 0

<=> [y(y+5) - 3(y-5)](y-3) = 0

<=> (y-3)(y+5)(y-3) = 0

<=> y- 3 = 0 hoặc y + 5 = 0

<=> y = 3 hoặc y = -5

9 tháng 2 2018

a. y3 - y2 - 21y +45 = 0

⇔y3+5y2-6y2-30y+9y+45=0

⇔(y3+5y2)-(6y2+30y)+(9y+45)=0

⇔y2(y+5)-6y(y+5)+9(y+5)=0

⇔(y+5)(y2-6y+9)=0

⇔(y+5)(y-3)2=0

\(\left[{}\begin{matrix}y+5=0\\\left(y-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-5\\y-3=0\Leftrightarrow y=-3\end{matrix}\right.\)

vậy s={-5;-3}

NV
7 tháng 1 2022

Đề bài thiếu dữ liệu

NV
31 tháng 12 2021

\(x+y+4=0\Rightarrow\left\{{}\begin{matrix}y=-4-x\\x+y=-4\end{matrix}\right.\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-4\right)^3-3xy.\left(-4\right)=12xy-64\)

\(\Rightarrow P=2\left(12xy-64\right)+3\left(x^2+y^2\right)+10x\)

\(=24xy+3x^2+3y^2+10x-128\)

\(=24x\left(-4-x\right)+3x^2+3\left(-4-x\right)^2+10x-128\)

\(=-18x^2-62x-80=-18\left(x+\dfrac{31}{18}\right)^2-\dfrac{479}{18}\le-\dfrac{479}{18}\)

\(P_{max}=-\dfrac{479}{18}\) khi \(\left(x;y\right)=\left(-\dfrac{31}{18};-\dfrac{41}{18}\right)\)

31 tháng 12 2021

ko có đơn vị P ạ

10: \(x\left(x-y\right)+x^2-y^2\)

\(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x+x+y\right)\)

\(=\left(x-y\right)\left(2x+y\right)\)

11: \(x^2-y^2+10x-10y\)

\(=\left(x^2-y^2\right)+\left(10x-10y\right)\)
\(=\left(x-y\right)\left(x+y\right)+10\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+10\right)\)

12: \(x^2-y^2+20x+20y\)

\(=\left(x^2-y^2\right)+\left(20x+20y\right)\)

\(=\left(x-y\right)\left(x+y\right)+20\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+20\right)\)

13: \(4x^2-9y^2-4x-6y\)

\(=\left(4x^2-9y^2\right)-\left(4x+6y\right)\)

\(=\left(2x-3y\right)\left(2x+3y\right)-2\left(2x+3y\right)\)

\(=\left(2x+3y\right)\left(2x-3y-2\right)\)

14: \(x^3-y^3+7x^2-7y^2\)

\(=\left(x^3-y^3\right)+\left(7x^2-7y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\cdot\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+7x+7y\right)\)

15: \(x^3+4x-\left(y^3+4y\right)\)

\(=x^3-y^3+4x-4y\)

\(=\left(x^3-y^3\right)+\left(4x-4y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+4\right)\)

16: \(x^3+y^3+2x+2y\)

\(=\left(x^3+y^3\right)+\left(2x+2y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+2\right)\)

17: \(x^3-y^3-2x^2y+2xy^2\)

\(=\left(x^3-y^3\right)-\left(2x^2y-2xy^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2xy\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2-2xy\right)\)

\(=\left(x-y\right)\left(x^2-xy+y^2\right)\)

18: \(x^3-4x^2+4x-xy^2\)

\(=x\left(x^2-4x+4-y^2\right)\)

\(=x\left[\left(x^2-4x+4\right)-y^2\right]\)

\(=x\left[\left(x-2\right)^2-y^2\right]\)

\(=x\left(x-2-y\right)\left(x-2+y\right)\)

8 tháng 12 2023

Phân tích đa thức thành nhân tử nha

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

`#3107.101107`

`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`

Ta có:

`x - y - 1 = 0`

`=> x - y = 1`

`D = x^3 - y^3 - 3xy`

`= (x - y)(x^2 + xy + y^2) - 3xy`

`= 1 * (x^2 + xy + y^2) - 3xy`

`= x^2+ xy + y^2 - 3xy`

`= x^2 - 2xy + y^2`

`= x^2 - 2*x*y + y^2`

`= (x - y)^2`

`= 1^2 = 1`

Vậy, với `x - y = 1` thì `D = 1`

________

`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`

`x + y = 5`

`=> (x + y)^2 = 25`

`=> x^2 + 2xy + y^2 = 25`

`=> 2xy = 25 - (x^2 + y^2)`

`=> 2xy = 25 - 17`

`=> 2xy = 8`

`=> xy = 4`

Ta có:

`E = x^3 + y^3`

`= (x + y)(x^2 - xy + y^2)`

`= 5 * [ (x^2 + y^2) - xy]`

`= 5 * (17 - 4)`

`= 5 * 13`

`= 65`

Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`

________

`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`

Ta có:

`x - y = 4`

`=> (x - y)^2 = 16`

`=> x^2 - 2xy + y^2 = 16`

`=> (x^2 + y^2) - 2xy = 16`

`=> 2xy = (x^2 + y^2) - 16`

`=> 2xy = 26 - 16`

`=> 2xy = 10`

`=> xy = 5`

Ta có:

`F = x^3 - y^3`

`= (x - y)(x^2 + xy + y^2)`

`= 4 * [ (x^2 + y^2) + xy]`

`= 4 * (26 + 5)`

`= 4*31`

`= 124`

Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`

d) Ta có: \(\left(y+3\right)^2\ge0\forall y\)

\(\left(y+5\right)^2\ge0\forall y\)

Do đó: \(\left(y+3\right)^2+\left(y+5\right)^2\ge0\forall y\)

\(\left(y+3\right)^2+\left(y+5\right)^2=0\)

nên \(\left\{{}\begin{matrix}\left(y+3\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+3=0\\y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3\\y=-5\end{matrix}\right.\)

Vậy: y=-3 và y=-5

15 tháng 2 2020

Thì ra là làm như thế.... quaoo....